Abstract
In an attempt to investigate the molecular basis of pyrazinamide hydrolysis by the PncA protein from Mycobacterium tuberculosis, we determined the pyrazinamidase activity of nine PncA mutants bearing a single amino acid substitution. Among them, three mutants (D8G, K96T and S104R) had virtually no activity (< or =0.004 unit/mg), five (F13S, T61P, P69L, Y103S and A146V) retained a low level of activity (0.06-0.25 unit/mg) and one (T167L) exhibited a wild-type activity (1.51 units/mg). The possible structural effects of these substitutions were assessed by analysing a three-dimensional model of the PncA protein constructed on the basis of the crystal structure of the N-carbamoylsarcosine amidohydrolase (CSHase) from Arthrobacter sp., an amidohydrolase which was found by hydrophobic cluster analysis to be closely related to PncA. In the PncA model, five of the mutated residues, Asp-8, Phe-13, Lys-96, Tyr-103 and Ser-104, were located within a 6 A sphere around the cysteine residue Cys-138, which could be the counterpart of the active cysteine residue Cys-177 found in the CSHase. Among the remaining mutated residues, Thr-61, Pro-69 and Ala-146 were found to be more distant from Cys-138 but were associated with structural elements contributing to the catalytic centre, whereas Thr-167 was situated in an alpha-helix located far from the putative active site. These data suggest that the decrease in pyrazinamidase activity observed in the PncA mutant proteins is well correlated with the structural modifications the mutations can cause in the environment of the putative active cysteine Cys-138.
Full Text
The Full Text of this article is available as a PDF (302.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callebaut I., Labesse G., Durand P., Poupon A., Canard L., Chomilier J., Henrissat B., Mornon J. P. Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci. 1997 Aug;53(8):621–645. doi: 10.1007/s000180050082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callebaut I., Mornon J. P. The human EBNA-2 coactivator p100: multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development. Biochem J. 1997 Jan 1;321(Pt 1):125–132. doi: 10.1042/bj3210125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colovos C., Cascio D., Yeates T. O. The 1.8 A crystal structure of the ycaC gene product from Escherichia coli reveals an octameric hydrolase of unknown specificity. Structure. 1998 Oct 15;6(10):1329–1337. doi: 10.1016/s0969-2126(98)00132-4. [DOI] [PubMed] [Google Scholar]
- Hirano K., Takahashi M., Kazumi Y., Fukasawa Y., Abe C. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis. 1997;78(2):117–122. doi: 10.1016/s0962-8479(98)80004-x. [DOI] [PubMed] [Google Scholar]
- Lemaitre N., Sougakoff W., Truffot-Pernot C., Jarlier V. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother. 1999 Jul;43(7):1761–1763. doi: 10.1128/aac.43.7.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
- Marttila H. J., Marjamäki M., Vyshnevskaya E., Vyshnevskiy B. I., Otten T. F., Vasilyef A. V., Viljanen M. K. pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from northwestern Russia. Antimicrob Agents Chemother. 1999 Jul;43(7):1764–1766. doi: 10.1128/aac.43.7.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mestdagh M., Fonteyne P. A., Realini L., Rossau R., Jannes G., Mijs W., De Smet K. A., Portaels F., Van den Eeckhout E. Relationship between pyrazinamide resistance, loss of pyrazinamidase activity, and mutations in the pncA locus in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1999 Sep;43(9):2317–2319. doi: 10.1128/aac.43.9.2317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins. 1992 Apr;12(4):345–364. doi: 10.1002/prot.340120407. [DOI] [PubMed] [Google Scholar]
- Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
- Raynaud C., Lanéelle M. A., Senaratne R. H., Draper P., Lanéelle G., Daffé M. Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology. 1999 Jun;145(Pt 6):1359–1367. doi: 10.1099/13500872-145-6-1359. [DOI] [PubMed] [Google Scholar]
- Romão M. J., Turk D., Gomis-Rüth F. X., Huber R., Schumacher G., Möllering H., Rüssmann L. Crystal structure analysis, refinement and enzymatic reaction mechanism of N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. at 2.0 A resolution. J Mol Biol. 1992 Aug 20;226(4):1111–1130. doi: 10.1016/0022-2836(92)91056-u. [DOI] [PubMed] [Google Scholar]
- Scorpio A., Lindholm-Levy P., Heifets L., Gilman R., Siddiqi S., Cynamon M., Zhang Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1997 Mar;41(3):540–543. doi: 10.1128/aac.41.3.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996 Jun;2(6):662–667. doi: 10.1038/nm0696-662. [DOI] [PubMed] [Google Scholar]
- Sreevatsan S., Pan X., Zhang Y., Kreiswirth B. N., Musser J. M. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother. 1997 Mar;41(3):636–640. doi: 10.1128/aac.41.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wojcik J., Girault J. A., Labesse G., Chomilier J., Mornon J. P., Callebaut I. Sequence analysis identifies a ras-associating (RA)-like domain in the N-termini of band 4.1/JEF domains and in the Grb7/10/14 adapter family. Biochem Biophys Res Commun. 1999 May 27;259(1):113–120. doi: 10.1006/bbrc.1999.0727. [DOI] [PubMed] [Google Scholar]
- Woodcock S., Mornon J. P., Henrissat B. Detection of secondary structure elements in proteins by hydrophobic cluster analysis. Protein Eng. 1992 Oct;5(7):629–635. doi: 10.1093/protein/5.7.629. [DOI] [PubMed] [Google Scholar]
- Zajc A., Romão M. J., Turk B., Huber R. Crystallographic and fluorescence studies of ligand binding to N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. J Mol Biol. 1996 Oct 25;263(2):269–283. doi: 10.1006/jmbi.1996.0574. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Scorpio A., Nikaido H., Sun Z. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol. 1999 Apr;181(7):2044–2049. doi: 10.1128/jb.181.7.2044-2049.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]