Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 1;353(Pt 3):467–474. doi: 10.1042/0264-6021:3530467

In vivo studies of the gamma subunit of retinal cGMP-phophodiesterase with a substitution of tyrosine-84.

S H Tsang 1, C K Yamashita 1, K Doi 1, D J Salchow 1, N Bouvier 1, M Mendelsohn 1, P Gouras 1, D B Farber 1, S P Goff 1
PMCID: PMC1221591  PMID: 11171042

Abstract

The inhibitory rod cGMP phosphodiesterase gamma subunit (PDEgamma) is a major component of the photoresponse and is required to support rod integrity. Pdeg(tm1)/Pdeg(tm1) mice (which lack PDEgamma owing to a targeted disruption of the Pdeg gene) suffer from a very rapid and severe photoreceptor degeneration. The Y84G (Tyr(84)-->Gly) allele of PDEgamma has previously been shown in experiments carried out in vitro to reduce the regulatory control of the PDE catalytic core (PDEalphabeta) exerted by the wild-type gamma subunit. To determine the effects of this mutation on in vivo function, the murine opsin promoter was used to direct expression to the photoreceptors of +/Pdeg(tm1) mice of a mutant Y84G and a wild-type PDEgamma control transgene. The transgenic mice were crossed with Pdeg(tm1)/Pdeg(tm1) mice to generate animals able to synthesize only the transgenic PDEgamma. Our results showed that wild-type PDEgamma and Y84G transgenes could complement the Pdeg(tm1)/Pdeg(tm1) mutant for photoreceptor survival. The mutation caused a significant biochemical defect in PDE activation by transducin. However, the Y84G mutation did not fully eliminate the control of PDEgamma on the PDE catalytic core in vivo; the expression of the mutant subunit was associated with only a 10-fold reduction in the amplitude of the a-wave and a 1.5-fold decrease in the b-wave of the corneal electroretinogram. Unexpectedly, the mutation caused a much 'milder' phenotype in vivo than was predicted from the biochemical assays in vitro.

Full Text

The Full Text of this article is available as a PDF (258.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arshavsky VYu, Antoch M. P., Lukjanov K. A., Philippov P. P. Transducin GTPase provides for rapid quenching of the cGMP cascade in rod outer segments. FEBS Lett. 1989 Jul 3;250(2):353–356. doi: 10.1016/0014-5793(89)80754-9. [DOI] [PubMed] [Google Scholar]
  2. Artemyev N. O., Hamm H. E. Two-site high-affinity interaction between inhibitory and catalytic subunits of rod cyclic GMP phosphodiesterase. Biochem J. 1992 Apr 1;283(Pt 1):273–279. doi: 10.1042/bj2830273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Artemyev N. O., Natochin M., Busman M., Schey K. L., Hamm H. E. Mechanism of photoreceptor cGMP phosphodiesterase inhibition by its gamma-subunits. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5407–5412. doi: 10.1073/pnas.93.11.5407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baehr W., Devlin M. J., Applebury M. L. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem. 1979 Nov 25;254(22):11669–11677. [PubMed] [Google Scholar]
  5. Berger A. L., Cerione R. A., Erickson J. W. Delineation of two functionally distinct gammaPDE binding sites on the bovine retinal cGMP phosphodiesterase by a mutant gammaPDE subunit. Biochemistry. 1999 Jan 26;38(4):1293–1299. doi: 10.1021/bi981683m. [DOI] [PubMed] [Google Scholar]
  6. Berger A. L., Cerione R. A., Erickson J. W. Real time conformational changes in the retinal phosphodiesterase gamma subunit monitored by resonance energy transfer. J Biol Chem. 1997 Jan 31;272(5):2714–2721. doi: 10.1074/jbc.272.5.2714. [DOI] [PubMed] [Google Scholar]
  7. Bitensky M. W., Miki N., Keirns J. J., Keirns M., Baraban J. M., Freeman J., Wheeler M. A., Lacy J., Marcus F. R. Activation of photoreceptor disk membrane phosphodiesterase by light and ATP. Adv Cyclic Nucleotide Res. 1975;5:213–240. [PubMed] [Google Scholar]
  8. Brown R. L. Functional regions of the inhibitory subunit of retinal rod cGMP phosphodiesterase identified by site-specific mutagenesis and fluorescence spectroscopy. Biochemistry. 1992 Jun 30;31(25):5918–5925. doi: 10.1021/bi00140a031. [DOI] [PubMed] [Google Scholar]
  9. Chader G. J., Herz L. R., Fletcher R. T. Light activation of phosphodiesterase activity in retinal rod outer segments. Biochim Biophys Acta. 1974 Jun 28;347(3):491–493. doi: 10.1016/0005-2728(74)90086-3. [DOI] [PubMed] [Google Scholar]
  10. Deterre P., Bigay J., Forquet F., Robert M., Chabre M. cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2424–2428. doi: 10.1073/pnas.85.8.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dratz E. A., Lewis J. W., Schaechter L. E., Parker K. R., Kliger D. S. Retinal rod GTPase turnover rate increases with concentration: a key to the control of visual excitation? Biochem Biophys Res Commun. 1987 Jul 31;146(2):379–386. doi: 10.1016/0006-291x(87)90540-7. [DOI] [PubMed] [Google Scholar]
  12. Farber D. B., Lolley R. N. Enzymic basis for cyclic GMP accumulation in degenerative photoreceptor cells of mouse retina. J Cyclic Nucleotide Res. 1976;2(3):139–148. [PubMed] [Google Scholar]
  13. Farber D. B., Lolley R. N. Measurement of cyclic nucleotides in retina. Methods Enzymol. 1982;81:551–556. doi: 10.1016/s0076-6879(82)81077-x. [DOI] [PubMed] [Google Scholar]
  14. Fung B. K., Griswold-Prenner I. G protein-effector coupling: binding of rod phosphodiesterase inhibitory subunit to transducin. Biochemistry. 1989 Apr 18;28(8):3133–3137. doi: 10.1021/bi00434a003. [DOI] [PubMed] [Google Scholar]
  15. Fung B. K., Hurley J. B., Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A. 1981 Jan;78(1):152–156. doi: 10.1073/pnas.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fung B. K., Young J. H., Yamane H. K., Griswold-Prenner I. Subunit stoichiometry of retinal rod cGMP phosphodiesterase. Biochemistry. 1990 Mar 20;29(11):2657–2664. doi: 10.1021/bi00463a006. [DOI] [PubMed] [Google Scholar]
  17. Gonzalez K., Cunnick J., Takemoto D. Retinal cyclic-GMP phosphodiesterase gamma-subunit: identification of functional residues in the inhibitory region. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1094–1096. doi: 10.1016/0006-291x(91)92050-t. [DOI] [PubMed] [Google Scholar]
  18. Granovsky A. E., Natochin M., Artemyev N. O. The gamma subunit of rod cGMP-phosphodiesterase blocks the enzyme catalytic site. J Biol Chem. 1997 May 2;272(18):11686–11689. doi: 10.1074/jbc.272.18.11686. [DOI] [PubMed] [Google Scholar]
  19. Hurley J. B., Stryer L. Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J Biol Chem. 1982 Sep 25;257(18):11094–11099. [PubMed] [Google Scholar]
  20. Kamps K. M., Hofmann K. P. ATP can promote activation and deactivation of the rod cGMP-phosphodiesterase. Kinetic light scattering on intact rod outer segments. FEBS Lett. 1986 Nov 24;208(2):241–247. doi: 10.1016/0014-5793(86)81025-0. [DOI] [PubMed] [Google Scholar]
  21. Kroll S., Phillips W. J., Cerione R. A. The regulation of the cyclic GMP phosphodiesterase by the GDP-bound form of the alpha subunit of transducin. J Biol Chem. 1989 Mar 15;264(8):4490–4497. [PubMed] [Google Scholar]
  22. Kutuzov M., Pfister C. Activation of the retinal cGMP-specific phosphodiesterase by the GDP-loaded alpha-subunit of transducin. Eur J Biochem. 1994 Mar 15;220(3):963–971. doi: 10.1111/j.1432-1033.1994.tb18700.x. [DOI] [PubMed] [Google Scholar]
  23. Körschen H. G., Beyermann M., Müller F., Heck M., Vantler M., Koch K. W., Kellner R., Wolfrum U., Bode C., Hofmann K. P. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature. 1999 Aug 19;400(6746):761–766. doi: 10.1038/23468. [DOI] [PubMed] [Google Scholar]
  24. Lem J., Applebury M. L., Falk J. D., Flannery J. G., Simon M. I. Tissue-specific and developmental regulation of rod opsin chimeric genes in transgenic mice. Neuron. 1991 Feb;6(2):201–210. doi: 10.1016/0896-6273(91)90356-5. [DOI] [PubMed] [Google Scholar]
  25. Lipkin V. M., Bondarenko V. A., Zagranichny V. E., Dobrynina L. N., Muradov K. G., Natochin MYu Site-directed mutagenesis of the cGMP phosphodiesterase gamma subunit from bovine rod outer segments: role of separate amino acid residues in the interaction with catalytic subunits and transducin alpha subunit. Biochim Biophys Acta. 1993 Apr 16;1176(3):250–256. doi: 10.1016/0167-4889(93)90052-q. [DOI] [PubMed] [Google Scholar]
  26. Lipkin V. M., Dumler I. L., Muradov K. G., Artemyev N. O., Etingof R. N. Active sites of the cyclic GMP phosphodiesterase gamma-subunit of retinal rod outer segments. FEBS Lett. 1988 Jul 18;234(2):287–290. doi: 10.1016/0014-5793(88)80100-5. [DOI] [PubMed] [Google Scholar]
  27. Lipkin V. M., Udovichenko I. P., Bondarenko V. A., Yurovskaya A. A., Telnykh E. V., Skiba N. P. Site-directed mutagenesis of the inhibitory subunit of retinal rod cyclic GMP phosphodiesterase. Biomed Sci. 1990 Mar;1(3):305–308. [PubMed] [Google Scholar]
  28. Miki N., Baraban J. M., Keirns J. J., Boyce J. J., Bitensky M. W. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J Biol Chem. 1975 Aug 25;250(16):6320–6327. [PubMed] [Google Scholar]
  29. Natochin M., Artemyev N. O. An interface of interaction between photoreceptor cGMP phosphodiesterase catalytic subunits and inhibitory gamma subunits. J Biol Chem. 1996 Aug 16;271(33):19964–19969. doi: 10.1074/jbc.271.33.19964. [DOI] [PubMed] [Google Scholar]
  30. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  31. Piriev N. I., Yamashita C., Samuel G., Farber D. B. Rod photoreceptor cGMP-phosphodiesterase: analysis of alpha and beta subunits expressed in human kidney cells. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9340–9344. doi: 10.1073/pnas.90.20.9340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pittler S. J., Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8322–8326. doi: 10.1073/pnas.88.19.8322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Skiba N. P., Artemyev N. O., Hamm H. E. The carboxyl terminus of the gamma-subunit of rod cGMP phosphodiesterase contains distinct sites of interaction with the enzyme catalytic subunits and the alpha-subunit of transducin. J Biol Chem. 1995 Jun 2;270(22):13210–13215. doi: 10.1074/jbc.270.22.13210. [DOI] [PubMed] [Google Scholar]
  34. Stryer L. Visual excitation and recovery. J Biol Chem. 1991 Jun 15;266(17):10711–10714. [PubMed] [Google Scholar]
  35. Takemoto D. J., Hurt D., Oppert B., Cunnick J. Domain mapping of the retinal cyclic GMP phosphodiesterase gamma-subunit. Function of the domains encoded by the three exons of the gamma-subunit gene. Biochem J. 1992 Feb 1;281(Pt 3):637–643. doi: 10.1042/bj2810637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsang S. H., Burns M. E., Calvert P. D., Gouras P., Baylor D. A., Goff S. P., Arshavsky V. Y. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science. 1998 Oct 2;282(5386):117–121. doi: 10.1126/science.282.5386.117. [DOI] [PubMed] [Google Scholar]
  38. Tsang S. H., Gouras P., Yamashita C. K., Kjeldbye H., Fisher J., Farber D. B., Goff S. P. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science. 1996 May 17;272(5264):1026–1029. doi: 10.1126/science.272.5264.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tuteja N., Farber D. B. Gamma-subunit of mouse retinal cyclic-GMP phosphodiesterase: cDNA and corresponding amino acid sequence. FEBS Lett. 1988 May 9;232(1):182–186. doi: 10.1016/0014-5793(88)80413-7. [DOI] [PubMed] [Google Scholar]
  40. Wensel T. G., Stryer L. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its gamma subunit and transducin. Proteins. 1986 Sep;1(1):90–99. doi: 10.1002/prot.340010114. [DOI] [PubMed] [Google Scholar]
  41. Yarfitz S., Hurley J. B. Transduction mechanisms of vertebrate and invertebrate photoreceptors. J Biol Chem. 1994 May 20;269(20):14329–14332. [PubMed] [Google Scholar]
  42. Zimmerman W. F., Godchaux W., 3rd Preparation and characterization of sealed bovine rod cell outer segments. Methods Enzymol. 1982;81:52–57. doi: 10.1016/s0076-6879(82)81011-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES