Abstract
The sialic acid-binding immunoglobulin-like lectins (siglecs) represent a recently defined distinct subset of the immunoglobulin superfamily. By using the Src homology 2 (SH2)-domain-containing protein tyrosine phosphatase SHP-1 as bait in a yeast two-hybrid screen, we have identified a new member of the mouse siglec family, mSiglec-E. The mSiglec-E cDNA encodes a protein of 467 amino acids that contains three extracellular immunoglobulin-like domains, a transmembrane region and a cytoplasmic tail bearing two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). mSiglec-E is highly expressed in mouse spleen, a tissue rich in leucocytes. The ITIMs of mSiglec-E can recruit SHP-1 and SHP-2, two inhibitory regulators of immunoreceptor signal transduction. This suggests that the function of mSiglec-E is probably an involvement in haematopoietic cells and the immune system as an inhibitory receptor. When expressed in COS-7 cells, mSiglec-E was able to mediate sialic acid-dependent binding to human red blood cells, suggesting that mSiglec-E may function through cell-cell interactions. In comparison with the known members of the siglec family, mSiglec-E exhibits a high degree of sequence similarity to both human siglec-7 and siglec-9. The gene encoding mSiglec-E is localized in the same chromosome as that encoding mouse CD33. Phylogenetic analysis reveals that neither mouse mSiglec-E nor CD33 shows a clear relationship with any human siglecs so far identified.
Full Text
The Full Text of this article is available as a PDF (489.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angata T., Varki A. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J Biol Chem. 2000 Jul 21;275(29):22127–22135. doi: 10.1074/jbc.M002775200. [DOI] [PubMed] [Google Scholar]
- Arquint M., Roder J., Chia L. S., Down J., Wilkinson D., Bayley H., Braun P., Dunn R. Molecular cloning and primary structure of myelin-associated glycoprotein. Proc Natl Acad Sci U S A. 1987 Jan;84(2):600–604. doi: 10.1073/pnas.84.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakker A. B., Wu J., Phillips J. H., Lanier L. L. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals. Hum Immunol. 2000 Jan;61(1):18–27. doi: 10.1016/s0198-8859(99)00160-3. [DOI] [PubMed] [Google Scholar]
- Blasioli J., Paust S., Thomas M. L. Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J Biol Chem. 1999 Jan 22;274(4):2303–2307. doi: 10.1074/jbc.274.4.2303. [DOI] [PubMed] [Google Scholar]
- Bléry M., Kubagawa H., Chen C. C., Vély F., Cooper M. D., Vivier E. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2446–2451. doi: 10.1073/pnas.95.5.2446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bléry M., Olcese L., Vivier E. Early signaling via inhibitory and activating NK receptors. Hum Immunol. 2000 Jan;61(1):51–64. doi: 10.1016/s0198-8859(99)00157-3. [DOI] [PubMed] [Google Scholar]
- Bouchard P., Zhao Z., Banville D., Dumas F., Fischer E. H., Shen S. H. Phosphorylation and identification of a major tyrosine phosphorylation site in protein tyrosine phosphatase 1C. J Biol Chem. 1994 Jul 29;269(30):19585–19589. [PubMed] [Google Scholar]
- Bruhns P., Marchetti P., Fridman W. H., Vivier E., Daëron M. Differential roles of N- and C-terminal immunoreceptor tyrosine-based inhibition motifs during inhibition of cell activation by killer cell inhibitory receptors. J Immunol. 1999 Mar 15;162(6):3168–3175. [PubMed] [Google Scholar]
- Burshtyn D. N., Scharenberg A. M., Wagtmann N., Rajagopalan S., Berrada K., Yi T., Kinet J. P., Long E. O. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity. 1996 Jan;4(1):77–85. doi: 10.1016/s1074-7613(00)80300-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornish A. L., Freeman S., Forbes G., Ni J., Zhang M., Cepeda M., Gentz R., Augustus M., Carter K. C., Crocker P. R. Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood. 1998 Sep 15;92(6):2123–2132. [PubMed] [Google Scholar]
- Crocker P. R., Kelm S., Hartnell A., Freeman S., Nath D., Vinson M., Mucklow S. Sialoadhesin and related cellular recognition molecules of the immunoglobulin superfamily. Biochem Soc Trans. 1996 Feb;24(1):150–156. doi: 10.1042/bst0240150. [DOI] [PubMed] [Google Scholar]
- Crocker P. R., Mucklow S., Bouckson V., McWilliam A., Willis A. C., Gordon S., Milon G., Kelm S., Bradfield P. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J. 1994 Oct 3;13(19):4490–4503. doi: 10.1002/j.1460-2075.1994.tb06771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crocker P. R., Vinson M., Kelm S., Drickamer K. Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis. Biochem J. 1999 Jul 15;341(Pt 2):355–361. [PMC free article] [PubMed] [Google Scholar]
- D'Ambrosio D., Hippen K. L., Minskoff S. A., Mellman I., Pani G., Siminovitch K. A., Cambier J. C. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by Fc gamma RIIB1. Science. 1995 Apr 14;268(5208):293–297. doi: 10.1126/science.7716523. [DOI] [PubMed] [Google Scholar]
- Doody G. M., Justement L. B., Delibrias C. C., Matthews R. J., Lin J., Thomas M. L., Fearon D. T. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science. 1995 Jul 14;269(5221):242–244. doi: 10.1126/science.7618087. [DOI] [PubMed] [Google Scholar]
- Falco M., Biassoni R., Bottino C., Vitale M., Sivori S., Augugliaro R., Moretta L., Moretta A. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med. 1999 Sep 20;190(6):793–802. doi: 10.1084/jem.190.6.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floyd H., Ni J., Cornish A. L., Zeng Z., Liu D., Carter K. C., Steel J., Crocker P. R. Siglec-8. A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem. 2000 Jan 14;275(2):861–866. doi: 10.1074/jbc.275.2.861. [DOI] [PubMed] [Google Scholar]
- Keegan K., Cooper J. A. Use of the two hybrid system to detect the association of the protein-tyrosine-phosphatase, SHPTP2, with another SH2-containing protein, Grb7. Oncogene. 1996 Apr 4;12(7):1537–1544. [PubMed] [Google Scholar]
- Kelm S., Schauer R., Crocker P. R. The Sialoadhesins--a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J. 1996 Dec;13(6):913–926. doi: 10.1007/BF01053186. [DOI] [PubMed] [Google Scholar]
- Lai C., Brow M. A., Nave K. A., Noronha A. B., Quarles R. H., Bloom F. E., Milner R. J., Sutcliffe J. G. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4337–4341. doi: 10.1073/pnas.84.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanier L. L. NK cell receptors. Annu Rev Immunol. 1998;16:359–393. doi: 10.1146/annurev.immunol.16.1.359. [DOI] [PubMed] [Google Scholar]
- Law C. L., Sidorenko S. P., Chandran K. A., Zhao Z., Shen S. H., Fischer E. H., Clark E. A. CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gamma(1) upon B cell activation. J Exp Med. 1996 Feb 1;183(2):547–560. doi: 10.1084/jem.183.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long E. O. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol. 1999;17:875–904. doi: 10.1146/annurev.immunol.17.1.875. [DOI] [PubMed] [Google Scholar]
- Maeda A., Kurosaki M., Ono M., Takai T., Kurosaki T. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J Exp Med. 1998 Apr 20;187(8):1355–1360. doi: 10.1084/jem.187.8.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May A. P., Robinson R. C., Vinson M., Crocker P. R., Jones E. Y. Crystal structure of the N-terminal domain of sialoadhesin in complex with 3' sialyllactose at 1.85 A resolution. Mol Cell. 1998 Apr;1(5):719–728. doi: 10.1016/s1097-2765(00)80071-4. [DOI] [PubMed] [Google Scholar]
- Mousseau D. D., Banville D., L'Abbé D., Bouchard P., Shen S. H. PILRalpha, a novel immunoreceptor tyrosine-based inhibitory motif-bearing protein, recruits SHP-1 upon tyrosine phosphorylation and is paired with the truncated counterpart PILRbeta. J Biol Chem. 2000 Feb 11;275(6):4467–4474. doi: 10.1074/jbc.275.6.4467. [DOI] [PubMed] [Google Scholar]
- Nicoll G., Ni J., Liu D., Klenerman P., Munday J., Dubock S., Mattei M. G., Crocker P. R. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem. 1999 Nov 26;274(48):34089–34095. doi: 10.1074/jbc.274.48.34089. [DOI] [PubMed] [Google Scholar]
- Okumura M., Thomas M. L. Regulation of immune function by protein tyrosine phosphatases. Curr Opin Immunol. 1995 Jun;7(3):312–319. doi: 10.1016/0952-7915(95)80104-9. [DOI] [PubMed] [Google Scholar]
- Patel N., Brinkman-Van der Linden E. C., Altmann S. W., Gish K., Balasubramanian S., Timans J. C., Peterson D., Bell M. P., Bazan J. F., Varki A. OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem. 1999 Aug 6;274(32):22729–22738. doi: 10.1074/jbc.274.32.22729. [DOI] [PubMed] [Google Scholar]
- Powell L. D., Varki A. I-type lectins. J Biol Chem. 1995 Jun 16;270(24):14243–14246. doi: 10.1074/jbc.270.24.14243. [DOI] [PubMed] [Google Scholar]
- Salzer J. L., Holmes W. P., Colman D. R. The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J Cell Biol. 1987 Apr;104(4):957–965. doi: 10.1083/jcb.104.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scharenberg A. M., Kinet J. P. The emerging field of receptor-mediated inhibitory signaling: SHP or SHIP? Cell. 1996 Dec 13;87(6):961–964. doi: 10.1016/s0092-8674(00)81790-0. [DOI] [PubMed] [Google Scholar]
- Shen S. H., Bastien L., Posner B. I., Chrétien P. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature. 1991 Aug 22;352(6337):736–739. doi: 10.1038/352736a0. [DOI] [PubMed] [Google Scholar]
- Simmons D., Seed B. Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J Immunol. 1988 Oct 15;141(8):2797–2800. [PubMed] [Google Scholar]
- Stamenkovic I., Seed B. The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature. 1990 May 3;345(6270):74–77. doi: 10.1038/345074a0. [DOI] [PubMed] [Google Scholar]
- Su L., Zhao Z., Bouchard P., Banville D., Fischer E. H., Krebs E. G., Shen S. H. Positive effect of overexpressed protein-tyrosine phosphatase PTP1C on mitogen-activated signaling in 293 cells. J Biol Chem. 1996 Apr 26;271(17):10385–10390. doi: 10.1074/jbc.271.17.10385. [DOI] [PubMed] [Google Scholar]
- Tang S., Shen Y. J., DeBellard M. E., Mukhopadhyay G., Salzer J. L., Crocker P. R., Filbin M. T. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol. 1997 Sep 22;138(6):1355–1366. doi: 10.1083/jcb.138.6.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tangye S. G., Lazetic S., Woollatt E., Sutherland G. R., Lanier L. L., Phillips J. H. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J Immunol. 1999 Jun 15;162(12):6981–6985. [PubMed] [Google Scholar]
- Taylor V. C., Buckley C. D., Douglas M., Cody A. J., Simmons D. L., Freeman S. D. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem. 1999 Apr 23;274(17):11505–11512. doi: 10.1074/jbc.274.17.11505. [DOI] [PubMed] [Google Scholar]
- Taylor V. C., Buckley C. D., Douglas M., Cody A. J., Simmons D. L., Freeman S. D. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem. 1999 Apr 23;274(17):11505–11512. doi: 10.1074/jbc.274.17.11505. [DOI] [PubMed] [Google Scholar]
- Tonks N. K., Neel B. G. From form to function: signaling by protein tyrosine phosphatases. Cell. 1996 Nov 1;87(3):365–368. doi: 10.1016/s0092-8674(00)81357-4. [DOI] [PubMed] [Google Scholar]
- Vinson M., van der Merwe P. A., Kelm S., May A., Jones E. Y., Crocker P. R. Characterization of the sialic acid-binding site in sialoadhesin by site-directed mutagenesis. J Biol Chem. 1996 Apr 19;271(16):9267–9272. doi: 10.1074/jbc.271.16.9267. [DOI] [PubMed] [Google Scholar]
- Vitale C., Romagnani C., Falco M., Ponte M., Vitale M., Moretta A., Bacigalupo A., Moretta L., Mingari M. C. Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15091–15096. doi: 10.1073/pnas.96.26.15091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vély F., Olivero S., Olcese L., Moretta A., Damen J. E., Liu L., Krystal G., Cambier J. C., Daëron M., Vivier E. Differential association of phosphatases with hematopoietic co-receptors bearing immunoreceptor tyrosine-based inhibition motifs. Eur J Immunol. 1997 Aug;27(8):1994–2000. doi: 10.1002/eji.1830270825. [DOI] [PubMed] [Google Scholar]
- Wang L. L., Blasioli J., Plas D. R., Thomas M. L., Yokoyama W. M. Specificity of the SH2 domains of SHP-1 in the interaction with the immunoreceptor tyrosine-based inhibitory motif-bearing receptor gp49B. J Immunol. 1999 Feb 1;162(3):1318–1323. [PubMed] [Google Scholar]
- Wilson G. L., Fox C. H., Fauci A. S., Kehrl J. H. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J Exp Med. 1991 Jan 1;173(1):137–146. doi: 10.1084/jem.173.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi T., Ihle J. N. Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. Mol Cell Biol. 1993 Jun;13(6):3350–3358. doi: 10.1128/mcb.13.6.3350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi T., Mui A. L., Krystal G., Ihle J. N. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol. 1993 Dec;13(12):7577–7586. doi: 10.1128/mcb.13.12.7577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Z., Su L., Hoglinger O., Jaramillo M. L., Banville D., Shen S. H. SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem. 1998 Feb 6;273(6):3687–3694. doi: 10.1074/jbc.273.6.3687. [DOI] [PubMed] [Google Scholar]
- Zhang J. Q., Nicoll G., Jones C., Crocker P. R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem. 2000 Jul 21;275(29):22121–22126. doi: 10.1074/jbc.M002788200. [DOI] [PubMed] [Google Scholar]
- Zhao Z. J., Zhao R. Purification and cloning of PZR, a binding protein and putative physiological substrate of tyrosine phosphatase SHP-2. J Biol Chem. 1998 Nov 6;273(45):29367–29372. doi: 10.1074/jbc.273.45.29367. [DOI] [PubMed] [Google Scholar]
- van der Merwe P. A., Crocker P. R., Vinson M., Barclay A. N., Schauer R., Kelm S. Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. J Biol Chem. 1996 Apr 19;271(16):9273–9280. [PubMed] [Google Scholar]