Abstract
Transverse tubule (T-tubule) ecto-ATPase from chicken skeletal muscle is an integral membrane glycoprotein that seems to exist as a homodimer and exhibits unusual properties. Treatment of T-tubule membranes with concanavalin A (Con A) did not significantly affect the thermal variation of the fluorescence anisotropy of vesicles labelled with 1,6-diphenyl-1,3,5-hexatriene or trimethylammonium-1,6-diphenyl-1,3,5-hexatriene. Cross-linking of membrane components with glutaraldehyde elicited effects on ecto-ATPase activity very similar to those of Con A treatment: a severalfold increase in activity, a decrease in Triton X-100 sensitivity and a requirement to be present before ATP to exert its action. In addition, glutaraldehyde and Con A normalized the temperature dependence and the kinetic behaviour of the enzyme. Membrane-perturbing agents (detergents, alcohols and cholesterol oxidase), with the sole exception of digitonin, caused a marked decrease in ecto-ATPase activity; the prior presence of Con A prevented this inhibition, whereas when the lectin was added after the membrane perturbing agent, recovery of the activity was not always possible. The addition of nucleotides before Con A led to a suppression of ecto-ATPase stimulation; it occurred when the nucleotide was hydrolysed (ATP or UTP) and when it was not (adenosine 5'-[beta,gamma-imido]triphosphate) and even in the presence of 3 mM P(i). A model is proposed for the complex regulatory mechanisms of chicken T-tubule ecto-ATPase that involves the occurrence of two different catalytic states in an equilibrium modulated by lectins and cross-linking agents, by the structure of the membrane and by the presence of ligands for a regulatory site.
Full Text
The Full Text of this article is available as a PDF (167.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beeler T. J., Gable K. S., Keffer J. M. Characterization of the membrane bound Mg2+-ATPase of rat skeletal muscle. Biochim Biophys Acta. 1983 Oct 12;734(2):221–234. doi: 10.1016/0005-2736(83)90120-7. [DOI] [PubMed] [Google Scholar]
- Betto R., Senter L., Ceoldo S., Tarricone E., Biral D., Salviati G. Ecto-ATPase activity of alpha-sarcoglycan (adhalin). J Biol Chem. 1999 Mar 19;274(12):7907–7912. doi: 10.1074/jbc.274.12.7907. [DOI] [PubMed] [Google Scholar]
- Caldwell C. C., Davis M. D., Knowles A. F. Ectonucleotidases of avian gizzard smooth muscle and liver plasma membranes: a comparative study. Arch Biochem Biophys. 1999 Feb 1;362(1):46–58. doi: 10.1006/abbi.1998.1008. [DOI] [PubMed] [Google Scholar]
- Caldwell C., Norman V., Urbina A., Jarvis A., Quinonez C., Stemm M., Dahms A. S. Regulatory differences among avian ecto-ATPases. Biochem Biophys Res Commun. 1997 Sep 29;238(3):728–732. doi: 10.1006/bbrc.1997.7377. [DOI] [PubMed] [Google Scholar]
- Cunningham H. B., Yazaki P. J., Domingo R. C., Oades K. V., Bohlen H., Sabbadini R. A., Dahms A. S. The skeletal muscle transverse tubular Mg-ATPase: identity with Mg-ATPases of smooth muscle and brain. Arch Biochem Biophys. 1993 May 15;303(1):32–43. doi: 10.1006/abbi.1993.1252. [DOI] [PubMed] [Google Scholar]
- Delgado J., Moro G., Saborido A., Megías A. T-tubule membranes from chicken skeletal muscle possess an enzymic cascade for degradation of extracellular ATP. Biochem J. 1997 Nov 1;327(Pt 3):899–907. doi: 10.1042/bj3270899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhalla N. S., Zhao D. Cell membrane Ca2+/Mg2+ ATPase. Prog Biophys Mol Biol. 1988;52(1):1–37. doi: 10.1016/0079-6107(88)90006-5. [DOI] [PubMed] [Google Scholar]
- Gordon L. M., Sauerheber R. D., Esgate J. A., Dipple I., Marchmont R. J., Houslay M. D. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem. 1980 May 25;255(10):4519–4527. [PubMed] [Google Scholar]
- Grinthal A., Guidotti G. Substitution of His59 converts CD39 apyrase into an ADPase in a quaternary structure dependent manner. Biochemistry. 2000 Jan 11;39(1):9–16. doi: 10.1021/bi991751k. [DOI] [PubMed] [Google Scholar]
- Hidalgo C., Gonzalez M. E., Lagos R. Characterization of the Ca2+- or Mg2+-ATPase of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem. 1983 Nov 25;258(22):13937–13945. [PubMed] [Google Scholar]
- Kang J. J., Cunningham H. B., Jachec C., Priest A., Dahms A. S., Sabbadini R. A. Direct effects of phorbol esters and diacylglycerols on the T-tubule Mg(2+)-ATPase. Arch Biochem Biophys. 1991 Oct;290(1):214–223. doi: 10.1016/0003-9861(91)90611-l. [DOI] [PubMed] [Google Scholar]
- Kirley T. L. Complementary DNA cloning and sequencing of the chicken muscle ecto-ATPase. Homology with the lymphoid cell activation antigen CD39. J Biol Chem. 1997 Jan 10;272(2):1076–1081. doi: 10.1074/jbc.272.2.1076. [DOI] [PubMed] [Google Scholar]
- Kirley T. L., Gerber L. K., Smith T. M. Expression and characterization of chicken muscle ecto-ATPase in mammalian COS cells. IUBMB Life. 1999 Jul;48(1):67–72. doi: 10.1080/713803482. [DOI] [PubMed] [Google Scholar]
- Kirley T. L. The Mg(2+)-ATPase of rabbit skeletal-muscle transverse tubule is a highly glycosylated multiple-subunit enzyme. Biochem J. 1991 Sep 1;278(Pt 2):375–380. doi: 10.1042/bj2780375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitagawa S., Sugaya Y., Nishizawa M., Hirata H. Relationship of alcohol-induced changes in Mg(2+)-ATPase activity of rabbit intestinal brush border membrane with changes in fluidity of its lipid bilayer. J Membr Biol. 1995 Jul;146(2):193–199. doi: 10.1007/BF00238008. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
- Lewis Carl S. A., Smith T. M., Kirley T. L. Cross-linking induces homodimer formation and inhibits enzymatic activity of chicken stomach ecto-apyrase. Biochem Mol Biol Int. 1998 Mar;44(3):463–470. doi: 10.1080/15216549800201482. [DOI] [PubMed] [Google Scholar]
- Megías A., Saborido A. Abnormal properties of Mg2(+)-ATPase in transverse tubule membranes from dystrophic chicken. Arch Biochem Biophys. 1990 Apr;278(1):113–119. doi: 10.1016/0003-9861(90)90238-t. [DOI] [PubMed] [Google Scholar]
- Moulton M. P., Sabbadini R. A., Norton K. C., Dahms A. S. Studies on the transverse tubule membrane Mg-ATPase. Lectin-induced alterations of kinetic behavior. J Biol Chem. 1986 Sep 15;261(26):12244–12251. [PubMed] [Google Scholar]
- Ortega A., Santiago-García J., Mas-Oliva J., Lepock J. R. Cholesterol increases the thermal stability of the Ca2+/Mg(2+)-ATPase of cardiac microsomes. Biochim Biophys Acta. 1996 Aug 14;1283(1):45–50. doi: 10.1016/0005-2736(96)00072-7. [DOI] [PubMed] [Google Scholar]
- Plesner L. Ecto-ATPases: identities and functions. Int Rev Cytol. 1995;158:141–214. doi: 10.1016/s0074-7696(08)62487-0. [DOI] [PubMed] [Google Scholar]
- Redegeld F. A., Caldwell C. C., Sitkovsky M. V. Ecto-protein kinases: ecto-domain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol Sci. 1999 Nov;20(11):453–459. doi: 10.1016/s0165-6147(99)01399-1. [DOI] [PubMed] [Google Scholar]
- Sabbadini R. A., Dahms A. S. Biochemical properties of isolated transverse tubular membranes. J Bioenerg Biomembr. 1989 Apr;21(2):163–213. doi: 10.1007/BF00812068. [DOI] [PubMed] [Google Scholar]
- Saborido A., Moro G., Megías A. Transverse tubule Mg(2+)-ATPase of skeletal muscle. Evidence for extracellular orientation of the chicken and rabbit enzymes. J Biol Chem. 1991 Dec 5;266(34):23490–23498. [PubMed] [Google Scholar]
- Smith T. M., Kirley T. L. Glycosylation is essential for functional expression of a human brain ecto-apyrase. Biochemistry. 1999 Feb 2;38(5):1509–1516. doi: 10.1021/bi9821768. [DOI] [PubMed] [Google Scholar]
- Stout J. G., Kirley T. L. Control of cell membrane ecto-ATPase by oligomerization state: intermolecular cross-linking modulates ATPase activity. Biochemistry. 1996 Jun 25;35(25):8289–8298. doi: 10.1021/bi960563g. [DOI] [PubMed] [Google Scholar]
- Stout J. G., Kirley T. L. Purification and characterization of the ecto-Mg-ATPase of chicken gizzard smooth muscle. J Biochem Biophys Methods. 1994 Jul;29(1):61–75. doi: 10.1016/0165-022x(94)90057-4. [DOI] [PubMed] [Google Scholar]
- Treuheit M. J., Vaghy P. L., Kirley T. L. Mg(2+)-ATPase from rabbit skeletal muscle transverse tubules is 67-kilodalton glycoprotein. J Biol Chem. 1992 Jun 15;267(17):11777–11782. [PubMed] [Google Scholar]
- Wang T. F., Ou Y., Guidotti G. The transmembrane domains of ectoapyrase (CD39) affect its enzymatic activity and quaternary structure. J Biol Chem. 1998 Sep 18;273(38):24814–24821. doi: 10.1074/jbc.273.38.24814. [DOI] [PubMed] [Google Scholar]
- Wood W. G., Igbavboa U., Rao A. M., Schroeder F., Avdulov N. A. Cholesterol oxidation reduces Ca(2+)+MG (2+)-ATPase activity, interdigitation, and increases fluidity of brain synaptic plasma membranes. Brain Res. 1995 Jun 12;683(1):36–42. doi: 10.1016/0006-8993(95)00347-s. [DOI] [PubMed] [Google Scholar]
- Zhao D., Elimban V., Dhalla N. S. Characterization of the purified rat heart plasma membrane Ca2+/Mg2+ ATPase. Mol Cell Biochem. 1991 Oct 16;107(2):151–160. doi: 10.1007/BF00225518. [DOI] [PubMed] [Google Scholar]
- Zimmermann H. Two novel families of ectonucleotidases: molecular structures, catalytic properties and a search for function. Trends Pharmacol Sci. 1999 Jun;20(6):231–236. doi: 10.1016/s0165-6147(99)01293-6. [DOI] [PubMed] [Google Scholar]