Abstract
cADP-ribose (cADPr) and nicotinic acid-adenine dinucleotide phosphate (NAADP) are two putative second messengers; they were first shown to stimulate Ca(2+) mobilization in sea urchin eggs. We have used the patch-clamp whole-cell technique to determine the role of cADPr and NAADP in relation to that of Ins(1,4,5)P(3) in mouse submandibular acinar cells by measuring agonist-evoked and second-messenger-evoked changes in Ca(2+)-dependent K(+) and Cl(-) currents. Both Ins(1,4,5)P(3) and cADPr were capable of reproducing the full range of responses normally seen in response to stimulation with acetylcholine (ACh). Low concentrations of agonist (10-20 nM ACh) or second messenger [1-10 microM Ins(1,4,5)P(3) or cADPr] elicited a sporadic transient activation of the Ca(2+)-dependent currents; mid-range concentrations [50-500 nM ACh, 50 microM Ins(1,4,5)P(3) or 50-100 microM cADPr] elicited high-frequency (approx. 2 Hz) trains of current spikes; and high concentrations [more than 500 nM ACh, more than 50 microM Ins(1,4,5)P(3) or more than 100 microM cADPr] gave rise to a sustained current response. The response to ACh was inhibited by antagonists of both the Ins(1,4,5)P(3) receptor [Ins(1,4,5)P(3)R] and the ryanodine receptor (RyR) but could be completely blocked only by an Ins(1,4,5)P(3)R antagonist (heparin). NAADP (50 nM to 100 microM) did not itself activate the Ca(2+)-dependent ion currents, nor did it inhibit the activation of these currents by ACh. These results show that, in these cells, both Ins(1,4,5)P(3)R and RyR are involved in the propagation of the Ca(2+) signal stimulated by ACh and that cADPr can function as an endogenous regulator of RyR. Furthermore, although NAADP might have a role in hormone-stimulated secretion in pancreatic acinar cells, it does not contribute to ACh-evoked secretion in submandibular acinar cells.
Full Text
The Full Text of this article is available as a PDF (180.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarhus R., Graeff R. M., Dickey D. M., Walseth T. F., Lee H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995 Dec 22;270(51):30327–30333. doi: 10.1074/jbc.270.51.30327. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Elementary and global aspects of calcium signalling. J Exp Biol. 1997 Jan;200(Pt 2):315–319. doi: 10.1242/jeb.200.2.315. [DOI] [PubMed] [Google Scholar]
- Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
- Cancela J. M., Churchill G. C., Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature. 1999 Mar 4;398(6722):74–76. doi: 10.1038/18032. [DOI] [PubMed] [Google Scholar]
- Cancela J. M., Mogami H., Tepikin A. V., Petersen O. H. Intracellular glucose switches between cyclic ADP-ribose and inositol trisphosphate triggering of cytosolic Ca2+ spiking. Curr Biol. 1998 Jul 16;8(15):865–868. doi: 10.1016/s0960-9822(07)00347-8. [DOI] [PubMed] [Google Scholar]
- Cancela J. M., Petersen O. H. The cyclic ADP ribose antagonist 8-NH2-cADP-ribose blocks cholecystokinin-evoked cytosolic Ca2+ spiking in pancreatic acinar cells. Pflugers Arch. 1998 Apr;435(5):746–748. doi: 10.1007/s004240050578. [DOI] [PubMed] [Google Scholar]
- Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
- Clementi E., Riccio M., Sciorati C., Nisticò G., Meldolesi J. The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. J Biol Chem. 1996 Jul 26;271(30):17739–17745. doi: 10.1074/jbc.271.30.17739. [DOI] [PubMed] [Google Scholar]
- Galione A. Cyclic ADP-ribose: a new way to control calcium. Science. 1993 Jan 15;259(5093):325–326. doi: 10.1126/science.8380506. [DOI] [PubMed] [Google Scholar]
- Galione A., McDougall A., Busa W. B., Willmott N., Gillot I., Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):348–352. doi: 10.1126/science.8392748. [DOI] [PubMed] [Google Scholar]
- Galione A., White A., Willmott N., Turner M., Potter B. V., Watson S. P. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature. 1993 Sep 30;365(6445):456–459. doi: 10.1038/365456a0. [DOI] [PubMed] [Google Scholar]
- Genazzani A. A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci. 1997 Apr;18(4):108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
- Ghosh T. K., Eis P. S., Mullaney J. M., Ebert C. L., Gill D. L. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J Biol Chem. 1988 Aug 15;263(23):11075–11079. [PubMed] [Google Scholar]
- Hagar R. E., Burgstahler A. D., Nathanson M. H., Ehrlich B. E. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. 1998 Nov 5;396(6706):81–84. doi: 10.1038/23954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidd J. F., Thorn P. Intracellular Ca2+ and Cl- channel activation in secretory cells. Annu Rev Physiol. 2000;62:493–513. doi: 10.1146/annurev.physiol.62.1.493. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Wei Y. H. Mutation and oxidative damage of mitochondrial DNA and defective turnover of mitochondria in human aging. J Formos Med Assoc. 1997 Oct;96(10):770–778. [PubMed] [Google Scholar]
- Lee M. G., Xu X., Zeng W., Diaz J., Wojcikiewicz R. J., Kuo T. H., Wuytack F., Racymaekers L., Muallem S. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem. 1997 Jun 20;272(25):15765–15770. doi: 10.1074/jbc.272.25.15765. [DOI] [PubMed] [Google Scholar]
- Leite M. F., Dranoff J. A., Gao L., Nathanson M. H. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem J. 1999 Jan 15;337(Pt 2):305–309. [PMC free article] [PubMed] [Google Scholar]
- Liu P., Scott J., Smith P. M. Intracellular calcium signalling in rat parotid acinar cells that lack secretory vesicles. Biochem J. 1998 Mar 1;330(Pt 2):847–852. doi: 10.1042/bj3300847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lomniczi A., Suburo A. M., Elverdin J. C., Mastronardi C. A., Diaz S., Rettori V., McCann S. M. Role of nitric oxide in salivary secretion. Neuroimmunomodulation. 1998 Sep-Oct;5(5):226–233. doi: 10.1159/000026342. [DOI] [PubMed] [Google Scholar]
- Looms D., Nauntofte B., Dissing S. ADP ribosyl cyclase activity in rat parotid acinar cells. Eur J Morphol. 1998 Aug;36 (Suppl):181–185. [PubMed] [Google Scholar]
- Michikawa H., Mitsui Y., Fujita-Yoshigaki J., Hara-Yokoyama M., Furuyama S., Sugiya H. cGMP production is coupled to Ca(2+)-dependent nitric oxide generation in rabbit parotid acinar cells. Cell Calcium. 1998 Jun;23(6):405–412. doi: 10.1016/s0143-4160(98)90097-5. [DOI] [PubMed] [Google Scholar]
- Osipchuk Y. V., Wakui M., Yule D. I., Gallacher D. V., Petersen O. H. Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca2+: simultaneous microfluorimetry and Ca2+ dependent Cl- current recording in single pancreatic acinar cells. EMBO J. 1990 Mar;9(3):697–704. doi: 10.1002/j.1460-2075.1990.tb08162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putney J. W., Jr Calcium signaling: up, down, up, down...what's the point? Science. 1998 Jan 9;279(5348):191–192. doi: 10.1126/science.279.5348.191. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
- Ramos-Franco J., Fill M., Mignery G. A. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys J. 1998 Aug;75(2):834–839. doi: 10.1016/S0006-3495(98)77572-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder R., Waldsich C., Wank H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 2000 Jan 4;19(1):1–9. doi: 10.1093/emboj/19.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. M., Gallacher D. V. Acetylcholine- and caffeine-evoked repetitive transient Ca(2+)-activated K+ and C1- currents in mouse submandibular cells. J Physiol. 1992 Apr;449:109–120. doi: 10.1113/jphysiol.1992.sp019077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiya H., Michikawa H., Mitsui Y., Fujita-Yoshigaki J., Hara-Yokoyama M., Furuyama S. Ca2+-nitric oxide-cGMP signaling in rabbit parotid acinar cells. Eur J Morphol. 1998 Aug;36 (Suppl):194–197. [PubMed] [Google Scholar]
- Thorn P., Gerasimenko O., Petersen O. H. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 1994 May 1;13(9):2038–2043. doi: 10.1002/j.1460-2075.1994.tb06478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
- Wakui M., Potter B. V., Petersen O. H. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature. 1989 May 25;339(6222):317–320. doi: 10.1038/339317a0. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Lee H. C. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim Biophys Acta. 1993 Sep 13;1178(3):235–242. doi: 10.1016/0167-4889(93)90199-y. [DOI] [PubMed] [Google Scholar]
- Wrenn R. W., Currie M. G., Herman L. E. Nitric oxide participates in the regulation of pancreatic acinar cell secretion. Life Sci. 1994;55(7):511–518. doi: 10.1016/0024-3205(94)00743-8. [DOI] [PubMed] [Google Scholar]
- Xu X., Zeng W., Diaz J., Lau K. S., Gukovskaya A. C., Brown R. J., Pandol S. J., Muallem S. nNOS and Ca2+ influx in rat pancreatic acinar and submandibular salivary gland cells. Cell Calcium. 1997 Sep;22(3):217–228. doi: 10.1016/s0143-4160(97)90015-4. [DOI] [PubMed] [Google Scholar]
- Zhang X., Wen J., Bidasee K. R., Besch H. R., Jr, Wojcikiewicz R. J., Lee B., Rubin R. P. Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland. Biochem J. 1999 Jun 1;340(Pt 2):519–527. [PMC free article] [PubMed] [Google Scholar]
