Abstract
Whole-cell patch-clamp experiments were performed to examine the mechanism underlying the inability of intracellular Ins(1,4,5)P(3) to activate the Ca(2+) release-activated Ca(2+) current (I(CRAC)) in rat basophilic leukaemia (RBL)-1 cells under conditions of weak cytoplasmic Ca(2+) buffering. Dialysis with Ins(1,4,5)P(3) in weak Ca(2+) buffer did not activate any macroscopic I(CRAC) even after precautions had been taken to minimize the extent of Ca(2+) entry during the experiment. Following intracellular dialysis with Ins(1,4,5)P(3) for >150 s in weak buffer, external application of the sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase (SERCA) pump blocker thapsigargin activated I(CRAC), and the current developed much more quickly than when thapsigargin was applied in the absence of Ins(1,4,5)P(3). This indicates that the Ins(1,4,5)P(3) receptors had not inactivated much over this timecourse. When external Ca(2+) was replaced by Ba(2+), Ins(1,4,5)P(3) still failed to generate any detectable I(CRAC) even though Ba(2+) permeates CRAC channels and is not taken up into the intracellular Ca(2+) stores. In strong Ca(2+) buffer, I(CRAC) could be activated by muscarinic-receptor stimulation, provided protein kinase C (PKC) was blocked. In weak buffer, however, as with Ins(1,4,5)P(3), stimulation of these receptors with carbachol did not activate I(CRAC) even after inhibition of PKC. The inability of Ins(1,4,5)P(3) to activate macroscopic I(CRAC) in weak Ca(2+) buffer was not altered by inhibition of Ca(2+)-dependent phosphorylation/dephosphorylation reactions. Our results suggest that the inability of Ins(1,4,5)P(3) to activate I(CRAC) under conditions of weak intracellular Ca(2+) buffering is not due to strong inactivation of the Ins(1,4,5)P(3) receptors. Instead, a futile Ca(2+) cycle across the stores seems to be occurring and SERCA pumps resequester sufficient Ca(2+) to ensure that the threshold for activation of macroscopic I(CRAC) has not been exceeded.
Full Text
The Full Text of this article is available as a PDF (184.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Artalejo A. R., Ellory J. C., Parekh A. B. Ca2+-dependent capacitance increases in rat basophilic leukemia cells following activation of store-operated Ca2+ entry and dialysis with high-Ca2+-containing intracellular solution. Pflugers Arch. 1998 Nov;436(6):934–939. doi: 10.1007/pl00008088. [DOI] [PubMed] [Google Scholar]
- Bakowski D., Parekh A. B. Voltage-dependent conductance changes in the store-operated Ca2+ current ICRAC in rat basophilic leukaemia cells. J Physiol. 2000 Dec 1;529(Pt 2):295–306. doi: 10.1111/j.1469-7793.2000.00295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezprozvanny I., Ehrlich B. E. The inositol 1,4,5-trisphosphate (InsP3) receptor. J Membr Biol. 1995 Jun;145(3):205–216. doi: 10.1007/BF00232713. [DOI] [PubMed] [Google Scholar]
- Broad L. M., Armstrong D. L., Putney J. W., Jr Role of the inositol 1,4,5-trisphosphate receptor in Ca(2+) feedback inhibition of calcium release-activated calcium current (I(crac)). J Biol Chem. 1999 Nov 12;274(46):32881–32888. doi: 10.1074/jbc.274.46.32881. [DOI] [PubMed] [Google Scholar]
- Camello P., Gardner J., Petersen O. H., Tepikin A. V. Calcium dependence of calcium extrusion and calcium uptake in mouse pancreatic acinar cells. J Physiol. 1996 Feb 1;490(Pt 3):585–593. doi: 10.1113/jphysiol.1996.sp021169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dippel E., Kalkbrenner F., Wittig B., Schultz G. A heterotrimeric G protein complex couples the muscarinic m1 receptor to phospholipase C-beta. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1391–1396. doi: 10.1073/pnas.93.4.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
- Fierro L., Parekh A. B. On the characterisation of the mechanism underlying passive activation of the Ca2+ release-activated Ca2+ current ICRAC in rat basophilic leukaemia cells. J Physiol. 1999 Oct 15;520(Pt 2):407–416. doi: 10.1111/j.1469-7793.1999.00407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fierro L., Parekh A. B. Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells. J Physiol. 2000 Jan 15;522(Pt 2):247–257. doi: 10.1111/j.1469-7793.2000.t01-1-00247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glitsch M. D., Parekh A. B. Ca2+ store dynamics determines the pattern of activation of the store-operated Ca2+ current I(CRAC) in response to InsP3 in rat basophilic leukaemia cells. J Physiol. 2000 Mar 1;523(Pt 2):283–290. doi: 10.1111/j.1469-7793.2000.t01-2-00283.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannaert-Merah Z., Combettes L., Coquil J. F., Swillens S., Mauger J. P., Claret M., Champeil P. Characterization of the co-agonist effects of strontium and calcium on myo-inositol trisphosphate-dependent ion fluxes in cerebellar microsomes. Cell Calcium. 1995 Nov;18(5):390–399. doi: 10.1016/0143-4160(95)90054-3. [DOI] [PubMed] [Google Scholar]
- Hartmann J., Verkhratsky A. Relations between intracellular Ca2+ stores and store-operated Ca2+ entry in primary cultured human glioblastoma cells. J Physiol. 1998 Dec 1;513(Pt 2):411–424. doi: 10.1111/j.1469-7793.1998.411bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Huang Y., Putney J. W., Jr Relationship between intracellular calcium store depletion and calcium release-activated calcium current in a mast cell line (RBL-1). J Biol Chem. 1998 Jul 31;273(31):19554–19559. doi: 10.1074/jbc.273.31.19554. [DOI] [PubMed] [Google Scholar]
- Kaftan E. J., Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate (InsP3) and calcium interact to increase the dynamic range of InsP3 receptor-dependent calcium signaling. J Gen Physiol. 1997 Nov;110(5):529–538. doi: 10.1085/jgp.110.5.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krause E., Schmid A., González A., Schulz I. Low cytoplasmic [Ca(2+)] activates I(CRAC) independently of global Ca(2+) store depletion in RBL-1 cells. J Biol Chem. 1999 Dec 24;274(52):36957–36962. doi: 10.1074/jbc.274.52.36957. [DOI] [PubMed] [Google Scholar]
- Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
- Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
- Liu K. Q., Bunnell S. C., Gurniak C. B., Berg L. J. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J Exp Med. 1998 May 18;187(10):1721–1727. doi: 10.1084/jem.187.10.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lupu V. D., Kaznacheyeva E., Krishna U. M., Falck J. R., Bezprozvanny I. Functional coupling of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1998 Jun 5;273(23):14067–14070. doi: 10.1074/jbc.273.23.14067. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Holland P. C. Calcium transport in sarcoplasmic reticulum. Annu Rev Biophys Bioeng. 1975;4(00):377–404. doi: 10.1146/annurev.bb.04.060175.002113. [DOI] [PubMed] [Google Scholar]
- Marshall I. C., Taylor C. W. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem J. 1994 Jul 15;301(Pt 2):591–598. doi: 10.1042/bj3010591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mogami H., Gardner J., Gerasimenko O. V., Camello P., Petersen O. H., Tepikin A. V. Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. J Physiol. 1999 Jul 15;518(Pt 2):463–467. doi: 10.1111/j.1469-7793.1999.0463p.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mogami H., Tepikin A. V., Petersen O. H. Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J. 1998 Jan 15;17(2):435–442. doi: 10.1093/emboj/17.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E. The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology. 1995 Nov;34(11):1423–1442. doi: 10.1016/0028-3908(95)00144-u. [DOI] [PubMed] [Google Scholar]
- Oancea E., Meyer T. Reversible desensitization of inositol trisphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. J Biol Chem. 1996 Jul 19;271(29):17253–17260. doi: 10.1074/jbc.271.29.17253. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Fleig A., Penner R. The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell. 1997 Jun 13;89(6):973–980. doi: 10.1016/s0092-8674(00)80282-2. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7907–7911. doi: 10.1073/pnas.92.17.7907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
- Partiseti M., Le Deist F., Hivroz C., Fischer A., Korn H., Choquet D. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem. 1994 Dec 23;269(51):32327–32335. [PubMed] [Google Scholar]
- Roderick H. L., Lechleiter J. D., Camacho P. Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol. 2000 Jun 12;149(6):1235–1248. doi: 10.1083/jcb.149.6.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder R., Waldsich C., Wank H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 2000 Jan 4;19(1):1–9. doi: 10.1093/emboj/19.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed] [Google Scholar]
- Watras J., Bezprozvanny I., Ehrlich B. E. Inositol 1,4,5-trisphosphate-gated channels in cerebellum: presence of multiple conductance states. J Neurosci. 1991 Oct;11(10):3239–3245. doi: 10.1523/JNEUROSCI.11-10-03239.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wuytack F., Papp B., Verboomen H., Raeymaekers L., Dode L., Bobe R., Enouf J., Bokkala S., Authi K. S., Casteels R. A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem. 1994 Jan 14;269(2):1410–1416. [PubMed] [Google Scholar]
- Zhang B. X., Zhao H., Muallem S. Ca(2+)-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by agonist stimulation. J Biol Chem. 1993 May 25;268(15):10997–11001. [PubMed] [Google Scholar]