Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 1;353(Pt 3):591–601. doi: 10.1042/0264-6021:3530591

Characterization of the mouse metal-regulatory-element-binding proteins, metal element protein-1 and metal regulatory transcription factor-1.

O Larochelle 1, G Stewart 1, P Moffatt 1, V Tremblay 1, C Séguin 1
PMCID: PMC1221605  PMID: 11171056

Abstract

Metal activation of metallothionein gene transcription depends mainly on the presence of regulatory DNA sequences termed metal-regulatory elements (MREs) and involves MRE-binding transcription factor-1 (MTF-1) interacting with the MREs in a Zn(2+)-dependent manner. We previously identified and characterized a nuclear protein, termed metal element protein-1 (MEP-1), specifically binding with high affinity to MRE elements. The precise relationship between MTF-1 and MEP-1 was unclear, and to determine whether MEP-1 and MTF-1 were distinct protein species, we performed DNA binding analyses to characterize the binding properties of both proteins. Electrophoretic mobility-shift assays showed that MTF-1, produced in COS cells, produces a slower-migrating band compared with that obtained with purified MEP-1. Using an anti-MTF-1 antibody, we showed that both the MTF-1-MRE and the MEP-1-MRE complexes are supershifted by an anti-MTF-1 antibody, thus demonstrating that MEP-1 is antigenically related to MTF-1. RNase protection analyses carried out with RNA prepared from different tissues and cell lines failed to reveal the presence of MTF-1 splicing variants. This indicates that MEP-1 may be a proteolytic fragment of MTF-1. MTF-1 DNA-binding activity was rapidly activated in vivo by Zn(2+) ions but not by Cd(2+), UV irradiation or PMA, and occurred on ice as well as at 21 degrees C. In control and Zn(2+)-treated cell extracts, DNA-binding activity was not enhanced in vitro following the addition of exogenous Zn(2+) or a preincubation at 37 degrees C. However, recombinant MTF-1 produced in vitro required Zn(2+) activation for DNA binding. Interestingly, treatment of nuclear extracts with calf intestine phosphatase completely abrogated MTF-1 DNA-binding activity, thus suggesting that phosphorylation is involved in the regulation of MTF-1 activity.

Full Text

The Full Text of this article is available as a PDF (401.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler V., Yin Z., Tew K. D., Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999 Nov 1;18(45):6104–6111. doi: 10.1038/sj.onc.1203128. [DOI] [PubMed] [Google Scholar]
  2. Auf der Maur A., Belser T., Elgar G., Georgiev O., Schaffner W. Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biol Chem. 1999 Feb;380(2):175–185. doi: 10.1515/BC.1999.026. [DOI] [PubMed] [Google Scholar]
  3. Bittel D., Dalton T., Samson S. L., Gedamu L., Andrews G. K. The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem. 1998 Mar 20;273(12):7127–7133. doi: 10.1074/jbc.273.12.7127. [DOI] [PubMed] [Google Scholar]
  4. Bordonaro M., Saccomanno C. F., Nordstrom J. L. An improved T1/A ribonuclease protection assay. Biotechniques. 1994 Mar;16(3):428–430. [PubMed] [Google Scholar]
  5. Brugnera E., Georgiev O., Radtke F., Heuchel R., Baker E., Sutherland G. R., Schaffner W. Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res. 1994 Aug 11;22(15):3167–3173. doi: 10.1093/nar/22.15.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter A. D., Felber B. K., Walling M. J., Jubier M. F., Schmidt C. J., Hamer D. H. Duplicated heavy metal control sequences of the mouse metallothionein-I gene. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7392–7396. doi: 10.1073/pnas.81.23.7392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chu W. A., Moehlenkamp J. D., Bittel D., Andrews G. K., Johnson J. A. Cadmium-mediated activation of the metal response element in human neuroblastoma cells lacking functional metal response element-binding transcription factor-1. J Biol Chem. 1999 Feb 26;274(9):5279–5284. doi: 10.1074/jbc.274.9.5279. [DOI] [PubMed] [Google Scholar]
  8. Dalton T. P., Bittel D., Andrews G. K. Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol Cell Biol. 1997 May;17(5):2781–2789. doi: 10.1128/mcb.17.5.2781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dalton T. P., Li Q., Bittel D., Liang L., Andrews G. K. Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem. 1996 Oct 18;271(42):26233–26241. doi: 10.1074/jbc.271.42.26233. [DOI] [PubMed] [Google Scholar]
  10. Del Sal G., Manfioletti G., Schneider C. The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques. 1989 May;7(5):514–520. [PubMed] [Google Scholar]
  11. Heuchel R., Radtke F., Georgiev O., Stark G., Aguet M., Schaffner W. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J. 1994 Jun 15;13(12):2870–2875. doi: 10.1002/j.1460-2075.1994.tb06581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koizumi S., Suzuki K., Ogra Y., Yamada H., Otsuka F. Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem. 1999 Feb;259(3):635–642. doi: 10.1046/j.1432-1327.1999.00069.x. [DOI] [PubMed] [Google Scholar]
  13. Labbé S., Larouche L., Mailhot D., Séguin C. Purification of mouse MEP-1, a nuclear protein which binds to the metal regulatory elements of genes encoding metallothionein. Nucleic Acids Res. 1993 Apr 11;21(7):1549–1554. doi: 10.1093/nar/21.7.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Labbé S., Prévost J., Remondelli P., Leone A., Séguin C. A nuclear factor binds to the metal regulatory elements of the mouse gene encoding metallothionein-I. Nucleic Acids Res. 1991 Aug 11;19(15):4225–4231. doi: 10.1093/nar/19.15.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moffatt P., Denizeau F. Metallothionein in physiological and physiopathological processes. Drug Metab Rev. 1997 Feb-May;29(1-2):261–307. doi: 10.3109/03602539709037585. [DOI] [PubMed] [Google Scholar]
  16. Moffatt P., Séguin C. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol. 1998 Jun;17(6):501–510. doi: 10.1089/dna.1998.17.501. [DOI] [PubMed] [Google Scholar]
  17. Mueller P. R., Salser S. J., Wold B. Constitutive and metal-inducible protein:DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev. 1988 Apr;2(4):412–427. doi: 10.1101/gad.2.4.412. [DOI] [PubMed] [Google Scholar]
  18. Murphy B. J., Andrews G. K., Bittel D., Discher D. J., McCue J., Green C. J., Yanovsky M., Giaccia A., Sutherland R. M., Laderoute K. R. Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res. 1999 Mar 15;59(6):1315–1322. [PubMed] [Google Scholar]
  19. Otsuka F., Iwamatsu A., Suzuki K., Ohsawa M., Hamer D. H., Koizumi S. Purification and characterization of a protein that binds to metal responsive elements of the human metallothionein IIA gene. J Biol Chem. 1994 Sep 23;269(38):23700–23707. [PubMed] [Google Scholar]
  20. Palmiter R. D. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1219–1223. doi: 10.1073/pnas.91.4.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palmiter R. D. The elusive function of metallothioneins. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8428–8430. doi: 10.1073/pnas.95.15.8428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Radtke F., Georgiev O., Müller H. P., Brugnera E., Schaffner W. Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res. 1995 Jun 25;23(12):2277–2286. doi: 10.1093/nar/23.12.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Radtke F., Heuchel R., Georgiev O., Hergersberg M., Gariglio M., Dembic Z., Schaffner W. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J. 1993 Apr;12(4):1355–1362. doi: 10.1002/j.1460-2075.1993.tb05780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Remondelli P., Leone A. Interactions of the zinc-regulated factor (ZiRF1) with the mouse metallothionein Ia promoter. Biochem J. 1997 Apr 1;323(Pt 1):79–85. doi: 10.1042/bj3230079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Richard D. E., Berra E., Gothié E., Roux D., Pouysségur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999 Nov 12;274(46):32631–32637. doi: 10.1074/jbc.274.46.32631. [DOI] [PubMed] [Google Scholar]
  26. Royds J. A., Dower S. K., Qwarnstrom E. E., Lewis C. E. Response of tumour cells to hypoxia: role of p53 and NFkB. Mol Pathol. 1998 Apr;51(2):55–61. doi: 10.1136/mp.51.2.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seguin C., Hamer D. H. Regulation in vitro of metallothionein gene binding factors. Science. 1987 Mar 13;235(4794):1383–1387. doi: 10.1126/science.3103216. [DOI] [PubMed] [Google Scholar]
  30. Smirnova I. V., Bittel D. C., Ravindra R., Jiang H., Andrews G. K. Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem. 2000 Mar 31;275(13):9377–9384. doi: 10.1074/jbc.275.13.9377. [DOI] [PubMed] [Google Scholar]
  31. Stuart G. W., Searle P. F., Chen H. Y., Brinster R. L., Palmiter R. D. A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7318–7322. doi: 10.1073/pnas.81.23.7318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Westin G., Schaffner W. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 1988 Dec 1;7(12):3763–3770. doi: 10.1002/j.1460-2075.1988.tb03260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES