Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 1;353(Pt 3):611–620. doi: 10.1042/0264-6021:3530611

Androgen-receptor-specific DNA binding to an element in the first exon of the human secretory component gene.

A Haelens 1, G Verrijdt 1, L Callewaert 1, B Peeters 1, W Rombauts 1, F Claessens 1
PMCID: PMC1221607  PMID: 11171058

Abstract

Androgens and glucocorticoids are steroid hormones, which exert their effects in vivo by binding and activating their cognate receptors. These intracellular receptors are transcription factors that can bind specific DNA sequences, called hormone response elements, located near the target genes. Although the androgen receptor (AR) and the glucocorticoid receptor (GR) bind the same consensus DNA sequence, androgen-specific responses can be achieved by non-conventional androgen response elements (AREs). Here we determine the specificity mechanism of such a selective element recently identified in the first exon of the human gene for secretory component (sc ARE). This sc ARE consists of two receptor-binding hexamers separated by three nucleotides. The DNA-binding domains of the AR and GR both bind the sc ARE, but, although the AR fragment dimerizes on the element, the GR fragment does not. Comparing the affinities of the DNA-binding domains for mutant forms of the sc ARE revealed that dimeric GR binding is actively excluded by the left hexamer and more precisely by the presence of a G residue at position -3, relative to the central spacer nucleotide. Inserting a G at this position changed a non-selective element into an androgen-selective one. We postulate that the AR recognizes the sc ARE as a direct repeat of two 5'-TGTTCT-3'-like core sequences instead of the classical inverted repeat. Direct repeat binding is not possible for the GR, thus explaining the selectivity of the sc ARE. This alternative dimerization by the AR on the sc ARE is also indicated by the DNA-binding characteristics of receptor fragments in which the dimerization interfaces were swapped. In addition, the flanking and spacer sequences seem to affect the functionality of the sc ARE.

Full Text

The Full Text of this article is available as a PDF (324.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Scheller A., Robins D. M. The stringency and magnitude of androgen-specific gene activation are combinatorial functions of receptor and nonreceptor binding site sequences. Mol Cell Biol. 1993 Oct;13(10):6326–6335. doi: 10.1128/mcb.13.10.6326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alen P., Claessens F., Schoenmakers E., Swinnen J. V., Verhoeven G., Rombauts W., Peeters B. Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform. Mol Endocrinol. 1999 Jan;13(1):117–128. doi: 10.1210/mend.13.1.0214. [DOI] [PubMed] [Google Scholar]
  3. Beato M., Chalepakis G., Schauer M., Slater E. P. DNA regulatory elements for steroid hormones. J Steroid Biochem. 1989 May;32(5):737–747. doi: 10.1016/0022-4731(89)90521-9. [DOI] [PubMed] [Google Scholar]
  4. Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. doi: 10.1016/0092-8674(89)90237-7. [DOI] [PubMed] [Google Scholar]
  5. Brinkmann A. O., Faber P. W., van Rooij H. C., Kuiper G. G., Ris C., Klaassen P., van der Korput J. A., Voorhorst M. M., van Laar J. H., Mulder E. The human androgen receptor: domain structure, genomic organization and regulation of expression. J Steroid Biochem. 1989;34(1-6):307–310. doi: 10.1016/0022-4731(89)90098-8. [DOI] [PubMed] [Google Scholar]
  6. Brochard D., Morel L., Cheyvialle D., Veyssiere G., Jean C. Androgen induction of the SVS family related protein MSVSP99: identification of a functional androgen response element. Mol Cell Endocrinol. 1997 Dec 31;136(1):91–99. doi: 10.1016/s0303-7207(97)00222-0. [DOI] [PubMed] [Google Scholar]
  7. Cato A. C., Henderson D., Ponta H. The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J. 1987 Feb;6(2):363–368. doi: 10.1002/j.1460-2075.1987.tb04763.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Claessens F., Alen P., Devos A., Peeters B., Verhoeven G., Rombauts W. The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J Biol Chem. 1996 Aug 9;271(32):19013–19016. doi: 10.1074/jbc.271.32.19013. [DOI] [PubMed] [Google Scholar]
  9. Claessens F., Celis L., Peeters B., Heyns W., Verhoeven G., Rombauts W. Functional characterization of an androgen response element in the first intron of the C3(1) gene of prostatic binding protein. Biochem Biophys Res Commun. 1989 Oct 31;164(2):833–840. doi: 10.1016/0006-291x(89)91534-9. [DOI] [PubMed] [Google Scholar]
  10. Devos A., Claessens F., Alen P., Winderickx J., Heyns W., Rombauts W., Peeters B. Identification of a functional androgen-response element in the exon 1-coding sequence of the cystatin-related protein gene crp2. Mol Endocrinol. 1997 Jul;11(8):1033–1043. doi: 10.1210/mend.11.8.9961. [DOI] [PubMed] [Google Scholar]
  11. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabre S., Manin M., Pailhoux E., Veyssière G., Jean C. Identification of a functional androgen response element in the promoter of the gene for the androgen-regulated aldose reductase-like protein specific to the mouse vas deferens. J Biol Chem. 1994 Feb 25;269(8):5857–5864. [PubMed] [Google Scholar]
  13. Forman B. M., Samuels H. H. Interactions among a subfamily of nuclear hormone receptors: the regulatory zipper model. Mol Endocrinol. 1990 Sep;4(9):1293–1301. doi: 10.1210/mend-4-9-1293. [DOI] [PubMed] [Google Scholar]
  14. Funder J. W. Mineralocorticoids, glucocorticoids, receptors and response elements. Science. 1993 Feb 19;259(5098):1132–1133. doi: 10.1126/science.8382375. [DOI] [PubMed] [Google Scholar]
  15. Giguère V., Hollenberg S. M., Rosenfeld M. G., Evans R. M. Functional domains of the human glucocorticoid receptor. Cell. 1986 Aug 29;46(5):645–652. doi: 10.1016/0092-8674(86)90339-9. [DOI] [PubMed] [Google Scholar]
  16. Glass C. K. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994 Jun;15(3):391–407. doi: 10.1210/edrv-15-3-391. [DOI] [PubMed] [Google Scholar]
  17. Haelens A., Verrijdt G., Schoenmakers E., Alen P., Peeters B., Rombauts W., Claessens F. The first exon of the human sc gene contains an androgen responsive unit and an interferon regulatory factor element. Mol Cell Endocrinol. 1999 Jul 20;153(1-2):91–102. doi: 10.1016/s0303-7207(99)00079-9. [DOI] [PubMed] [Google Scholar]
  18. Ham J., Thomson A., Needham M., Webb P., Parker M. Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucleic Acids Res. 1988 Jun 24;16(12):5263–5276. doi: 10.1093/nar/16.12.5263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ho K. C., Marschke K. B., Tan J., Power S. G., Wilson E. M., French F. S. A complex response element in intron 1 of the androgen-regulated 20-kDa protein gene displays cell type-dependent androgen receptor specificity. J Biol Chem. 1993 Dec 25;268(36):27226–27235. [PubMed] [Google Scholar]
  20. Lambert J. R., Nordeen S. K. Steroid-selective initiation of chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter is controlled by the site of promoter integration. J Biol Chem. 1998 Dec 4;273(49):32708–32714. doi: 10.1074/jbc.273.49.32708. [DOI] [PubMed] [Google Scholar]
  21. Li Q., Wrange O. Accessibility of a glucocorticoid response element in a nucleosome depends on its rotational positioning. Mol Cell Biol. 1995 Aug;15(8):4375–4384. doi: 10.1128/mcb.15.8.4375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
  23. Marivoet S., Hertogen M., Verhoeven G., Heyns W. Antibodies against synthetic peptides recognize the human and rat androgen receptor. J Steroid Biochem Mol Biol. 1990 Sep;37(1):39–45. doi: 10.1016/0960-0760(90)90370-z. [DOI] [PubMed] [Google Scholar]
  24. Nelson C. C., Hendy S. C., Shukin R. J., Cheng H., Bruchovsky N., Koop B. F., Rennie P. S. Determinants of DNA sequence specificity of the androgen, progesterone, and glucocorticoid receptors: evidence for differential steroid receptor response elements. Mol Endocrinol. 1999 Dec;13(12):2090–2107. doi: 10.1210/mend.13.12.0396. [DOI] [PubMed] [Google Scholar]
  25. Ning Y. M., Robins D. M. AML3/CBFalpha1 is required for androgen-specific activation of the enhancer of the mouse sex-limited protein (Slp) gene. J Biol Chem. 1999 Oct 22;274(43):30624–30630. doi: 10.1074/jbc.274.43.30624. [DOI] [PubMed] [Google Scholar]
  26. Nordeen S. K., Suh B. J., Kühnel B., Hutchison C. A., 3rd Structural determinants of a glucocorticoid receptor recognition element. Mol Endocrinol. 1990 Dec;4(12):1866–1873. doi: 10.1210/mend-4-12-1866. [DOI] [PubMed] [Google Scholar]
  27. Okret S., Wikström A. C., Wrange O., Andersson B., Gustafsson J. A. Monoclonal antibodies against the rat liver glucocorticoid receptor. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1609–1613. doi: 10.1073/pnas.81.6.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roche P. J., Hoare S. A., Parker M. G. A consensus DNA-binding site for the androgen receptor. Mol Endocrinol. 1992 Dec;6(12):2229–2235. doi: 10.1210/mend.6.12.1491700. [DOI] [PubMed] [Google Scholar]
  29. Rundlett S. E., Miesfeld R. L. Quantitative differences in androgen and glucocorticoid receptor DNA binding properties contribute to receptor-selective transcriptional regulation. Mol Cell Endocrinol. 1995 Mar;109(1):1–10. doi: 10.1016/0303-7207(95)03477-o. [DOI] [PubMed] [Google Scholar]
  30. Schmitt J., Stunnenberg H. G. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand. Nucleic Acids Res. 1993 Jun 11;21(11):2673–2681. doi: 10.1093/nar/21.11.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schoenmakers E., Alen P., Verrijdt G., Peeters B., Verhoeven G., Rombauts W., Claessens F. Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochem J. 1999 Aug 1;341(Pt 3):515–521. [PMC free article] [PubMed] [Google Scholar]
  32. Schoenmakers E., Verrijdt G., Peeters B., Verhoeven G., Rombauts W., Claessens F. Differences in DNA binding characteristics of the androgen and glucocorticoid receptors can determine hormone-specific responses. J Biol Chem. 2000 Apr 21;275(16):12290–12297. doi: 10.1074/jbc.275.16.12290. [DOI] [PubMed] [Google Scholar]
  33. Strähle U., Boshart M., Klock G., Stewart F., Schütz G. Glucocorticoid- and progesterone-specific effects are determined by differential expression of the respective hormone receptors. Nature. 1989 Jun 22;339(6226):629–632. doi: 10.1038/339629a0. [DOI] [PubMed] [Google Scholar]
  34. Truss M., Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev. 1993 Aug;14(4):459–479. doi: 10.1210/edrv-14-4-459. [DOI] [PubMed] [Google Scholar]
  35. Tsai M. J., O'Malley B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–486. doi: 10.1146/annurev.bi.63.070194.002315. [DOI] [PubMed] [Google Scholar]
  36. Umesono K., Evans R. M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell. 1989 Jun 30;57(7):1139–1146. doi: 10.1016/0092-8674(89)90051-2. [DOI] [PubMed] [Google Scholar]
  37. Verrijdt G., Schoenmakers E., Alen P., Haelens A., Peeters B., Rombauts W., Claessens F. Androgen specificity of a response unit upstream of the human secretory component gene is mediated by differential receptor binding to an essential androgen response element. Mol Endocrinol. 1999 Sep;13(9):1558–1570. doi: 10.1210/mend.13.9.0347. [DOI] [PubMed] [Google Scholar]
  38. Verrijdt G., Schoenmakers E., Haelens A., Peeters B., Verhoeven G., Rombauts W., Claessens F. Change of specificity mutations in androgen-selective enhancers. Evidence for a role of differential DNA binding by the androgen receptor. J Biol Chem. 2000 Apr 21;275(16):12298–12305. doi: 10.1074/jbc.275.16.12298. [DOI] [PubMed] [Google Scholar]
  39. Xu L., Glass C. K., Rosenfeld M. G. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev. 1999 Apr;9(2):140–147. doi: 10.1016/S0959-437X(99)80021-5. [DOI] [PubMed] [Google Scholar]
  40. Zilliacus J., Wright A. P., Carlstedt-Duke J., Gustafsson J. A. Structural determinants of DNA-binding specificity by steroid receptors. Mol Endocrinol. 1995 Apr;9(4):389–400. doi: 10.1210/mend.9.4.7659083. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES