Abstract
Elongation factor-2 kinase (eEF-2K) negatively regulates mRNA translation via the phosphorylation and inactivation of elongation factor-2 (eEF-2). We have shown previously that purified eEF-2K can be phosphorylated in vitro by cAMP-dependent protein kinase (PKA) and that this induces significant Ca(2+)/calmodulin (CaM)-independent eEF-2K activity [Redpath and Proud (1993) Biochem. J. 293, 31-34]. Furthermore, elevation of cAMP levels in adipocytes also increases the level of Ca(2+)/CaM-independent eEF-2K activity to a similar extent, providing a mechanistic link between elevated cAMP and the inhibition of protein synthesis [Diggle, Redpath, Heesom and Denton (1998) Biochem. J. 336, 525-529]. Here we describe the expression of glutathione S-transferase (GST)-eEF-2K fusion protein and the identification of two serine residues that are phosphorylated by PKA in vitro. Endoproteinase Arg-C digestion of GST-eEF-2K produced two phosphopeptides that were separated by HPLC and sequenced. (32)P Radioactivity release from these peptides indicated that the sites of phosphorylation were Ser-365 and Ser-499, both of which lie C-terminal to the catalytic domain. Mutation of these sites to non-phosphorylatable residues indicated that both sites need to be phosphorylated to induce Ca(2+)/CaM-independent eEF-2K activity in vitro. However, expression of Myc-tagged eEF-2K in HEK 293 cells, followed by treatment with chlorophenylthio-cAMP (CPT-cAMP), showed that Ser-499 phosphorylation alone induced Ca(2+)/CaM-independent eEF-2K activity in cells. Co-expression of wild-type eEF-2K with luciferase resulted in a 2-3-fold reduction in luciferase expression. Expression of eEF-2K S499D resulted in a 10-fold reduction in luciferase expression despite the fact that this mutant was expressed at very low levels. This indicates that eEF-2K S499D is constitutively active when expressed in cells, thus leading to the suppression of its own expression. Our data demonstrate an important role for the phosphorylation of Ser-499 in the activation of eEF-2K by PKA and the inhibition of protein synthesis.
Full Text
The Full Text of this article is available as a PDF (186.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayuso-Parrilla M. S., Martín-Requero A., Pérez-Días J., Parrilla R. Role of glucagon on the control of hepatic protein synthesis and degradation in the rat in vivo. J Biol Chem. 1976 Dec 25;251(24):7785–7790. [PubMed] [Google Scholar]
- Chefalo P. J., Yang J. M., Ramaiah K. V., Gehrke L., Chen J. J. Inhibition of protein synthesis in insect cells by baculovirus-expressed heme-regulated eIF-2 alpha kinase. J Biol Chem. 1994 Oct 14;269(41):25788–25794. [PubMed] [Google Scholar]
- Clancy C. E., Mendoza M. G., Naismith T. V., Kolman M. F., Egelhoff T. T. Identification of a protein kinase from Dictyostelium with homology to the novel catalytic domain of myosin heavy chain kinase A. J Biol Chem. 1997 May 2;272(18):11812–11815. doi: 10.1074/jbc.272.18.11812. [DOI] [PubMed] [Google Scholar]
- Côté G. P., Luo X., Murphy M. B., Egelhoff T. T. Mapping of the novel protein kinase catalytic domain of Dictyostelium myosin II heavy chain kinase A. J Biol Chem. 1997 Mar 14;272(11):6846–6849. doi: 10.1074/jbc.272.11.6846. [DOI] [PubMed] [Google Scholar]
- Diggle T. A., Redpath N. T., Heesom K. J., Denton R. M. Regulation of protein-synthesis elongation-factor-2 kinase by cAMP in adipocytes. Biochem J. 1998 Dec 15;336(Pt 3):525–529. doi: 10.1042/bj3360525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diggle T. A., Seehra C. K., Hase S., Redpath N. T. Analysis of the domain structure of elongation factor-2 kinase by mutagenesis. FEBS Lett. 1999 Aug 27;457(2):189–192. doi: 10.1016/s0014-5793(99)01034-0. [DOI] [PubMed] [Google Scholar]
- Kennelly P. J., Krebs E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed] [Google Scholar]
- Luo K. X., Hurley T. R., Sefton B. M. Cyanogen bromide cleavage and proteolytic peptide mapping of proteins immobilized to membranes. Methods Enzymol. 1991;201:149–152. doi: 10.1016/0076-6879(91)01014-s. [DOI] [PubMed] [Google Scholar]
- Proud C. G. Peptide-chain elongation in eukaryotes. Mol Biol Rep. 1994 May;19(3):161–170. doi: 10.1007/BF00986958. [DOI] [PubMed] [Google Scholar]
- Proud C. G. Protein phosphorylation in translational control. Curr Top Cell Regul. 1992;32:243–369. doi: 10.1016/b978-0-12-152832-4.50008-2. [DOI] [PubMed] [Google Scholar]
- Redpath N. T., Foulstone E. J., Proud C. G. Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J. 1996 May 1;15(9):2291–2297. [PMC free article] [PubMed] [Google Scholar]
- Redpath N. T., Price N. T., Proud C. G. Cloning and expression of cDNA encoding protein synthesis elongation factor-2 kinase. J Biol Chem. 1996 Jul 19;271(29):17547–17554. [PubMed] [Google Scholar]
- Redpath N. T., Proud C. G. Activity of protein phosphatases against initiation factor-2 and elongation factor-2. Biochem J. 1990 Nov 15;272(1):175–180. doi: 10.1042/bj2720175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redpath N. T., Proud C. G. Cyclic AMP-dependent protein kinase phosphorylates rabbit reticulocyte elongation factor-2 kinase and induces calcium-independent activity. Biochem J. 1993 Jul 1;293(Pt 1):31–34. doi: 10.1042/bj2930031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redpath N. T., Proud C. G. Molecular mechanisms in the control of translation by hormones and growth factors. Biochim Biophys Acta. 1994 Jan 13;1220(2):147–162. doi: 10.1016/0167-4889(94)90130-9. [DOI] [PubMed] [Google Scholar]
- Redpath N. T., Proud C. G. Purification and phosphorylation of elongation factor-2 kinase from rabbit reticulocytes. Eur J Biochem. 1993 Mar 1;212(2):511–520. doi: 10.1111/j.1432-1033.1993.tb17688.x. [DOI] [PubMed] [Google Scholar]
- Ryazanov A. G., Ward M. D., Mendola C. E., Pavur K. S., Dorovkov M. V., Wiedmann M., Erdjument-Bromage H., Tempst P., Parmer T. G., Prostko C. R. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4884–4889. doi: 10.1073/pnas.94.10.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Songyang Z., Blechner S., Hoagland N., Hoekstra M. F., Piwnica-Worms H., Cantley L. C. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol. 1994 Nov 1;4(11):973–982. doi: 10.1016/s0960-9822(00)00221-9. [DOI] [PubMed] [Google Scholar]
- West M. J., Sullivan N. F., Willis A. E. Translational upregulation of the c-myc oncogene in Bloom's syndrome cell lines. Oncogene. 1995 Dec 21;11(12):2515–2524. [PubMed] [Google Scholar]