Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 1;353(Pt 3):673–680. doi: 10.1042/0264-6021:3530673

Prenatal and postnatal development of peroxisomal lipid-metabolizing pathways in the mouse.

S Huyghe 1, M Casteels 1, A Janssen 1, L Meulders 1, G P Mannaerts 1, P E Declercq 1, P P Van Veldhoven 1, M Baes 1
PMCID: PMC1221614  PMID: 11171065

Abstract

The ontogeny of the following peroxisomal metabolic pathways was evaluated in mouse liver and brain: alpha-oxidation, beta-oxidation and ether phospholipid synthesis. In mouse embryos lacking functional peroxisomes (PEX5(-/-) knock-out), a deficiency of plasmalogens and an accumulation of the very-long-chain fatty acid C(26:0) was observed in comparison with control littermates, indicating that ether phospholipid synthesis and beta-oxidation are already active at mid-gestation in the mouse. Northern analysis revealed that the enzymes required for the beta-oxidation of straight-chain substrates are present in liver and brain during embryonic development but that those responsible for the degradation of branched-chain substrates are present only in liver from late gestation onwards. The expression pattern of transcripts encoding enzymes of the alpha-oxidation pathway suggested that alpha-oxidation is initiated in the liver around birth and is not active in brain throughout development. Remarkably, a strong induction of the mRNA levels of enzymes involved in alpha-oxidation and beta-oxidation was observed around birth in the liver. In contrast, enzyme transcripts that were expressed in brain were present at rather constant levels throughout prenatal and postnatal development. These results suggest that the defective ether phospholipid synthesis and/or peroxisomal beta-oxidation of straight-chain fatty acids might be involved in the pathogenesis of the prenatal organ defects in peroxisome-deficient mice and men.

Full Text

The Full Text of this article is available as a PDF (165.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonenkov V. D., Van Veldhoven P. P., Waelkens E., Mannaerts G. P. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates. J Biol Chem. 1997 Oct 10;272(41):26023–26031. doi: 10.1074/jbc.272.41.26023. [DOI] [PubMed] [Google Scholar]
  2. Baes M., Gressens P., Baumgart E., Carmeliet P., Casteels M., Fransen M., Evrard P., Fahimi D., Declercq P. E., Collen D. A mouse model for Zellweger syndrome. Nat Genet. 1997 Sep;17(1):49–57. doi: 10.1038/ng0997-49. [DOI] [PubMed] [Google Scholar]
  3. Baes M., Huyghe S., Carmeliet P., Declercq P. E., Collen D., Mannaerts G. P., Van Veldhoven P. P. Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem. 2000 May 26;275(21):16329–16336. doi: 10.1074/jbc.M001994200. [DOI] [PubMed] [Google Scholar]
  4. Baumgart E., Vanhooren J. C., Fransen M., Marynen P., Puype M., Vandekerckhove J., Leunissen J. A., Fahimi H. D., Mannaerts G. P., van Veldhoven P. P. Molecular characterization of the human peroxisomal branched-chain acyl-CoA oxidase: cDNA cloning, chromosomal assignment, tissue distribution, and evidence for the absence of the protein in Zellweger syndrome. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13748–13753. doi: 10.1073/pnas.93.24.13748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baumgart E., Vanhooren J. C., Fransen M., Van Leuven F., Fahimi H. D., Van Veldhoven P. P., Mannaerts G. P. Molecular cloning and further characterization of rat peroxisomal trihydroxycoprostanoyl-CoA oxidase. Biochem J. 1996 Nov 15;320(Pt 1):115–121. doi: 10.1042/bj3200115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blank M. L., Cress E. A., Piantadosi C., Snyder F. A method for the quantitative determination of glycerolipids containing O-alkyl and O-alk-1-enyl moieties. Biochim Biophys Acta. 1975 Feb 20;380(2):208–218. doi: 10.1016/0005-2760(75)90007-7. [DOI] [PubMed] [Google Scholar]
  7. Casteels M., Schepers L., Parmentier G., Eyssen H. J., Mannaerts G. P. Activation and peroxisomal beta-oxidation of fatty acids and bile acid intermediates in liver from Bombina orientalis and from the rat. Comp Biochem Physiol B. 1989;92(1):129–132. doi: 10.1016/0305-0491(89)90324-6. [DOI] [PubMed] [Google Scholar]
  8. Croes K., Casteels M., De Hoffmann E., Mannaerts G. P., Van Veldhoven P. P. alpha-Oxidation of 3-methyl-substituted fatty acids in rat liver. Production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate. Eur J Biochem. 1996 Sep 15;240(3):674–683. doi: 10.1111/j.1432-1033.1996.0674h.x. [DOI] [PubMed] [Google Scholar]
  9. Croes K., Foulon V., Casteels M., Van Veldhoven P. P., Mannaerts G. P. Phytanoyl-CoA hydroxylase: recognition of 3-methyl-branched acyl-coAs and requirement for GTP or ATP and Mg(2+) in addition to its known hydroxylation cofactors. J Lipid Res. 2000 Apr;41(4):629–636. [PubMed] [Google Scholar]
  10. Dieuaide-Noubhani M., Novikov D., Baumgart E., Vanhooren J. C., Fransen M., Goethals M., Vandekerckhove J., Van Veldhoven P. P., Mannaerts G. P. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur J Biochem. 1996 Sep 15;240(3):660–666. doi: 10.1111/j.1432-1033.1996.0660h.x. [DOI] [PubMed] [Google Scholar]
  11. Fan C. Y., Pan J., Chu R., Lee D., Kluckman K. D., Usuda N., Singh I., Yeldandi A. V., Rao M. S., Maeda N. Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem. 1996 Oct 4;271(40):24698–24710. doi: 10.1074/jbc.271.40.24698. [DOI] [PubMed] [Google Scholar]
  12. Faust P. L., Hatten M. E. Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol. 1997 Dec 1;139(5):1293–1305. doi: 10.1083/jcb.139.5.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foulon V., Antonenkov V. D., Croes K., Waelkens E., Mannaerts G. P., Van Veldhoven P. P., Casteels M. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during alpha-oxidation of 3-methyl-branched fatty acids. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10039–10044. doi: 10.1073/pnas.96.18.10039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hajra A. K., Das A. K. Lipid biosynthesis in peroxisomes. Ann N Y Acad Sci. 1996 Dec 27;804:129–141. doi: 10.1111/j.1749-6632.1996.tb18613.x. [DOI] [PubMed] [Google Scholar]
  15. Jansen G. A., Ofman R., Ferdinandusse S., Ijlst L., Muijsers A. O., Skjeldal O. H., Stokke O., Jakobs C., Besley G. T., Wraith J. E. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet. 1997 Oct;17(2):190–193. doi: 10.1038/ng1097-190. [DOI] [PubMed] [Google Scholar]
  16. Janssen A., Baes M., Gressens P., Mannaerts G. P., Declercq P., Van Veldhoven P. P. Docosahexaenoic acid deficit is not a major pathogenic factor in peroxisome-deficient mice. Lab Invest. 2000 Jan;80(1):31–35. doi: 10.1038/labinvest.3780005. [DOI] [PubMed] [Google Scholar]
  17. Kannenberg F., Ellinghaus P., Assmann G., Seedorf U. Aberrant oxidation of the cholesterol side chain in bile acid synthesis of sterol carrier protein-2/sterol carrier protein-x knockout mice. J Biol Chem. 1999 Dec 10;274(50):35455–35460. doi: 10.1074/jbc.274.50.35455. [DOI] [PubMed] [Google Scholar]
  18. Knoll A., Sargueil F., Salles J., Cassagne C., Garbay B. Gene expression of peroxisomal beta-oxidation enzymes in rat brain. Brain Res Mol Brain Res. 1999 Dec 10;74(1-2):217–220. doi: 10.1016/s0169-328x(99)00252-1. [DOI] [PubMed] [Google Scholar]
  19. Krisans S. K. Cell compartmentalization of cholesterol biosynthesis. Ann N Y Acad Sci. 1996 Dec 27;804:142–164. doi: 10.1111/j.1749-6632.1996.tb18614.x. [DOI] [PubMed] [Google Scholar]
  20. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  21. Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
  22. Mannaerts G. P., Van Veldhoven P. P., Casteels M. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochem Biophys. 2000;32(SPRING):73–87. doi: 10.1385/cbb:32:1-3:73. [DOI] [PubMed] [Google Scholar]
  23. Mihalik S. J., Morrell J. C., Kim D., Sacksteder K. A., Watkins P. A., Gould S. J. Identification of PAHX, a Refsum disease gene. Nat Genet. 1997 Oct;17(2):185–189. doi: 10.1038/ng1097-185. [DOI] [PubMed] [Google Scholar]
  24. Mihalik S. J., Rainville A. M., Watkins P. A. Phytanic acid alpha-oxidation in rat liver peroxisomes. Production of alpha-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur J Biochem. 1995 Sep 1;232(2):545–551. doi: 10.1111/j.1432-1033.1995.545zz.x. [DOI] [PubMed] [Google Scholar]
  25. Normand T., Husen B., Leenders F., Pelczar H., Baert J. L., Begue A., Flourens A. C., Adamski J., de Launoit Y. Molecular characterization of mouse 17 beta-hydroxysteroid dehydrogenase IV. J Steroid Biochem Mol Biol. 1995 Dec;55(5-6):541–548. doi: 10.1016/0960-0760(95)00204-9. [DOI] [PubMed] [Google Scholar]
  26. Nöhammer C., El-Shabrawi Y., Schauer S., Hiden M., Berger J., Forss-Petter S., Winter E., Eferl R., Zechner R., Hoefler G. cDNA cloning and analysis of tissue-specific expression of mouse peroxisomal straight-chain acyl-CoA oxidase. Eur J Biochem. 2000 Feb;267(4):1254–1260. doi: 10.1046/j.1432-1327.2000.01128.x. [DOI] [PubMed] [Google Scholar]
  27. Ohba T., Holt J. A., Billheimer J. T., Strauss J. F., 3rd Human sterol carrier protein x/sterol carrier protein 2 gene has two promoters. Biochemistry. 1995 Aug 22;34(33):10660–10668. doi: 10.1021/bi00033a042. [DOI] [PubMed] [Google Scholar]
  28. Powers J. M., Moser H. W., Moser A. B., Upshur J. K., Bradford B. F., Pai S. G., Kohn P. H., Frias J., Tiffany C. Fetal cerebrohepatorenal (Zellweger) syndrome: dysmorphic, radiologic, biochemical, and pathologic findings in four affected fetuses. Hum Pathol. 1985 Jun;16(6):610–620. doi: 10.1016/s0046-8177(85)80111-8. [DOI] [PubMed] [Google Scholar]
  29. Powers J. M., Moser H. W. Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol. 1998 Jan;8(1):101–120. doi: 10.1111/j.1750-3639.1998.tb00139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Powers J. M., Tummons R. C., Caviness V. S., Jr, Moser A. B., Moser H. W. Structural and chemical alterations in the cerebral maldevelopment of fetal cerebro-hepato-renal (Zellweger) syndrome. J Neuropathol Exp Neurol. 1989 May;48(3):270–289. doi: 10.1097/00005072-198905000-00005. [DOI] [PubMed] [Google Scholar]
  31. Qi C., Zhu Y., Pan J., Usuda N., Maeda N., Yeldandi A. V., Rao M. S., Hashimoto T., Reddy J. K. Absence of spontaneous peroxisome proliferation in enoyl-CoA Hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver. Further support for the role of fatty acyl CoA oxidase in PPARalpha ligand metabolism. J Biol Chem. 1999 May 28;274(22):15775–15780. doi: 10.1074/jbc.274.22.15775. [DOI] [PubMed] [Google Scholar]
  32. Seedorf U., Raabe M., Assmann G. Cloning, expression and sequences of mouse sterol-carrier protein-x-encoding cDNAs and a related pseudogene. Gene. 1993 Jan 30;123(2):165–172. doi: 10.1016/0378-1119(93)90120-r. [DOI] [PubMed] [Google Scholar]
  33. Seedorf U., Raabe M., Ellinghaus P., Kannenberg F., Fobker M., Engel T., Denis S., Wouters F., Wirtz K. W., Wanders R. J. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev. 1998 Apr 15;12(8):1189–1201. doi: 10.1101/gad.12.8.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swinkels B. W., Gould S. J., Bodnar A. G., Rachubinski R. A., Subramani S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 1991 Nov;10(11):3255–3262. doi: 10.1002/j.1460-2075.1991.tb04889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van Veldhoven P. P., Bell R. M. Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Biochim Biophys Acta. 1988 Mar 25;959(2):185–196. doi: 10.1016/0005-2760(88)90030-6. [DOI] [PubMed] [Google Scholar]
  36. Van Veldhoven P. P., Van Rompuy P., Fransen M., De Béthune B., Mannaerts G. P. Large-scale purification and further characterization of rat pristanoyl-CoA oxidase. Eur J Biochem. 1994 Jun 15;222(3):795–801. doi: 10.1111/j.1432-1033.1994.tb18926.x. [DOI] [PubMed] [Google Scholar]
  37. Vanhooren J. C., Fransen M., de Béthune B., Baumgart E., Baes M., Torrekens S., Van Leuven F., Mannaerts G. P., Van Veldhoven P. P. Rat pristanoyl-CoA oxidase. cDNA cloning and recognition of its C-terminal (SQL) by the peroxisomal-targeting signal 1 receptor. Eur J Biochem. 1996 Jul 15;239(2):302–309. doi: 10.1111/j.1432-1033.1996.0302u.x. [DOI] [PubMed] [Google Scholar]
  38. Wanders R. J., Denis S., Wouters F., Wirtz K. W., Seedorf U. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem Biophys Res Commun. 1997 Jul 30;236(3):565–569. doi: 10.1006/bbrc.1997.7007. [DOI] [PubMed] [Google Scholar]
  39. Wanders R. J., Jansen G., van Roermund C. W., Denis S., Schutgens R. B., Jakobs B. S. Metabolic aspects of peroxisomal disorders. Ann N Y Acad Sci. 1996 Dec 27;804:450–460. doi: 10.1111/j.1749-6632.1996.tb18636.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES