Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 1;353(Pt 3):701–708. doi: 10.1042/0264-6021:3530701

Inhibition of hepatitis B virus X gene expression by novel DNA enzymes.

R Goila 1, A C Banerjea 1
PMCID: PMC1221617  PMID: 11171068

Abstract

Two mono- and a di-RNA-cleaving DNA enzymes with the 10-23 catalytic motif were synthesized that were targeted to cleave at the conserved site/sites of the X gene of the hepatitis B virus. In each case, protein-independent but Mg(2+)-dependent cleavage of in vitro-synthesized full-length X RNA was obtained. Specific cleavage products were obtained with two different mono- and a di-DNA enzyme, with the latter giving rise to multiple RNA fragments that retained the cleavage specificity of the mono-DNA enzymes. A relatively less efficient cleavage was also obtained under simulated physiological conditions by the two mono-DNA enzymes but the efficiency of the di-DNA enzyme was significantly reduced. A single nucleotide change (G to C) in the 10-23 catalytic motif of the DNA enzyme 307 abolished its ability to cleave target RNA completely. Both, mono- and di-DNA enzymes, when introduced into a mammalian cell, showed specific inhibition of X-gene-mediated transactivation of reporter-gene expression. This decrease was due to the ability of these DNA enzymes to cleave X RNA intracellularly, which was also reflected by significant reduction in the levels of X protein in a liver-specific cell line, HepG2. Ribonuclease protection assay confirmed the specific reduction of X RNA in DNA-enzyme-treated cells. Potential in vivo applications of mono- and di-DNA enzymes in interfering specifically with the X-gene-mediated pathology are discussed.

Full Text

The Full Text of this article is available as a PDF (190.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akhtar S., Agrawal S. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci. 1997 Jan;18(1):12–18. doi: 10.1016/s0165-6147(96)01002-4. [DOI] [PubMed] [Google Scholar]
  3. Banerjea A. C., Brechling K. A., Ray C. A., Erikson H., Pickup D. J., Joklik W. K. High-level synthesis of biologically active reovirus protein sigma 1 in a mammalian expression vector system. Virology. 1988 Dec;167(2):601–612. [PubMed] [Google Scholar]
  4. Banerjea A. C., Joklik W. K. Reovirus protein sigma 1 translated in vitro, as well as truncated derivatives of it that lack up to two-thirds of its C-terminal portion, exists as two major tetrameric molecular species that differ in electrophoretic mobility. Virology. 1990 Nov;179(1):460–462. doi: 10.1016/0042-6822(90)90315-i. [DOI] [PubMed] [Google Scholar]
  5. Cech T. R. The chemistry of self-splicing RNA and RNA enzymes. Science. 1987 Jun 19;236(4808):1532–1539. doi: 10.1126/science.2438771. [DOI] [PubMed] [Google Scholar]
  6. Chen C. J., Banerjea A. C., Harmison G. G., Haglund K., Schubert M. Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication--potential effectiveness against most presently sequenced HIV-1 isolates. Nucleic Acids Res. 1992 Sep 11;20(17):4581–4589. doi: 10.1093/nar/20.17.4581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Couture L. A., Stinchcomb D. T. Anti-gene therapy: the use of ribozymes to inhibit gene function. Trends Genet. 1996 Dec;12(12):510–515. doi: 10.1016/s0168-9525(97)81398-4. [DOI] [PubMed] [Google Scholar]
  8. Dash B. C., Harikrishnan T. A., Goila R., Shahi S., Unwalla H., Husain S., Banerjea A. C. Targeted cleavage of HIV-1 envelope gene by a DNA enzyme and inhibition of HIV-1 envelope-CD4 mediated cell fusion. FEBS Lett. 1998 Jul 24;431(3):395–399. doi: 10.1016/s0014-5793(98)00799-6. [DOI] [PubMed] [Google Scholar]
  9. Doria M., Klein N., Lucito R., Schneider R. J. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBO J. 1995 Oct 2;14(19):4747–4757. doi: 10.1002/j.1460-2075.1995.tb00156.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dropulić B., Lin N. H., Martin M. A., Jeang K. T. Functional characterization of a U5 ribozyme: intracellular suppression of human immunodeficiency virus type 1 expression. J Virol. 1992 Mar;66(3):1432–1441. doi: 10.1128/jvi.66.3.1432-1441.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flory C. M., Pavco P. A., Jarvis T. C., Lesch M. E., Wincott F. E., Beigelman L., Hunt S. W., 3rd, Schrier D. J. Nuclease-resistant ribozymes decrease stromelysin mRNA levels in rabbit synovium following exogenous delivery to the knee joint. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):754–758. doi: 10.1073/pnas.93.2.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goila R., Banerjea A. C. Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of the coreceptor function by DNA-enzyme. FEBS Lett. 1998 Oct 2;436(2):233–238. doi: 10.1016/s0014-5793(98)01137-5. [DOI] [PubMed] [Google Scholar]
  13. Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
  14. Hendry P., McCall M. J. A comparison of the in vitro activity of DNA-armed and all-RNA hammerhead ribozymes. Nucleic Acids Res. 1995 Oct 11;23(19):3928–3936. doi: 10.1093/nar/23.19.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Husain S., Goila R., Shahi S., Banerjea A. First report of a healthy Indian heterozygous for delta 32 mutant of HIV-1 co-receptor-CCR5 gene. Gene. 1998 Jan 30;207(2):141–147. doi: 10.1016/s0378-1119(97)00617-3. [DOI] [PubMed] [Google Scholar]
  16. Kidd-Ljunggren K., Oberg M., Kidd A. H. The hepatitis B virus X gene: analysis of functional domain variation and gene phylogeny using multiple sequences. J Gen Virol. 1995 Sep;76(Pt 9):2119–2130. doi: 10.1099/0022-1317-76-9-2119. [DOI] [PubMed] [Google Scholar]
  17. Kumar V., Jayasuryan N., Kumar R. A truncated mutant (residues 58-140) of the hepatitis B virus X protein retains transactivation function. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5647–5652. doi: 10.1073/pnas.93.11.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lo K. M., Biasolo M. A., Dehni G., Palú G., Haseltine W. A. Inhibition of replication of HIV-1 by retroviral vectors expressing tat-antisense and anti-tat ribozyme RNA. Virology. 1992 Sep;190(1):176–183. doi: 10.1016/0042-6822(92)91203-7. [DOI] [PubMed] [Google Scholar]
  19. Paik S. Y., Banerjea A., Chen C. J., Ye Z., Harmison G. G., Schubert M. Defective HIV-1 provirus encoding a multitarget-ribozyme inhibits accumulation of spliced and unspliced HIV-1 mRNAs, reduces infectivity of viral progeny, and protects the cells from pathogenesis. Hum Gene Ther. 1997 Jun 10;8(9):1115–1124. doi: 10.1089/hum.1997.8.9-1115. [DOI] [PubMed] [Google Scholar]
  20. Poeschla E., Corbeau P., Wong-Staal F. Development of HIV vectors for anti-HIV gene therapy. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11395–11399. doi: 10.1073/pnas.93.21.11395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rossi J. J. Controlled, targeted, intracellular expression of ribozymes: progress and problems. Trends Biotechnol. 1995 Aug;13(8):301–306. doi: 10.1016/S0167-7799(00)88969-6. [DOI] [PubMed] [Google Scholar]
  22. Rossner M. T. Review: hepatitis B virus X-gene product: a promiscuous transcriptional activator. J Med Virol. 1992 Feb;36(2):101–117. doi: 10.1002/jmv.1890360207. [DOI] [PubMed] [Google Scholar]
  23. Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sarver N., Cantin E. M., Chang P. S., Zaia J. A., Ladne P. A., Stephens D. A., Rossi J. J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990 Mar 9;247(4947):1222–1225. doi: 10.1126/science.2107573. [DOI] [PubMed] [Google Scholar]
  25. Sczakiel G., Nedbal W. The potential of ribozymes as antiviral agents. Trends Microbiol. 1995 Jun;3(6):213–217. doi: 10.1016/s0966-842x(00)88927-1. [DOI] [PubMed] [Google Scholar]
  26. Twu J. S., Robinson W. S. Hepatitis B virus X gene can transactivate heterologous viral sequences. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2046–2050. doi: 10.1073/pnas.86.6.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  28. Wakita T., Wands J. R. Specific inhibition of hepatitis C virus expression by antisense oligodeoxynucleotides. In vitro model for selection of target sequence. J Biol Chem. 1994 May 13;269(19):14205–14210. [PubMed] [Google Scholar]
  29. Yamada O., Kraus G., Luznik L., Yu M., Wong-Staal F. A chimeric human immunodeficiency virus type 1 (HIV-1) minimal Rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1. J Virol. 1996 Mar;70(3):1596–1601. doi: 10.1128/jvi.70.3.1596-1601.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES