Abstract
Two mono- and a di-RNA-cleaving DNA enzymes with the 10-23 catalytic motif were synthesized that were targeted to cleave at the conserved site/sites of the X gene of the hepatitis B virus. In each case, protein-independent but Mg(2+)-dependent cleavage of in vitro-synthesized full-length X RNA was obtained. Specific cleavage products were obtained with two different mono- and a di-DNA enzyme, with the latter giving rise to multiple RNA fragments that retained the cleavage specificity of the mono-DNA enzymes. A relatively less efficient cleavage was also obtained under simulated physiological conditions by the two mono-DNA enzymes but the efficiency of the di-DNA enzyme was significantly reduced. A single nucleotide change (G to C) in the 10-23 catalytic motif of the DNA enzyme 307 abolished its ability to cleave target RNA completely. Both, mono- and di-DNA enzymes, when introduced into a mammalian cell, showed specific inhibition of X-gene-mediated transactivation of reporter-gene expression. This decrease was due to the ability of these DNA enzymes to cleave X RNA intracellularly, which was also reflected by significant reduction in the levels of X protein in a liver-specific cell line, HepG2. Ribonuclease protection assay confirmed the specific reduction of X RNA in DNA-enzyme-treated cells. Potential in vivo applications of mono- and di-DNA enzymes in interfering specifically with the X-gene-mediated pathology are discussed.
Full Text
The Full Text of this article is available as a PDF (190.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akhtar S., Agrawal S. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci. 1997 Jan;18(1):12–18. doi: 10.1016/s0165-6147(96)01002-4. [DOI] [PubMed] [Google Scholar]
- Banerjea A. C., Brechling K. A., Ray C. A., Erikson H., Pickup D. J., Joklik W. K. High-level synthesis of biologically active reovirus protein sigma 1 in a mammalian expression vector system. Virology. 1988 Dec;167(2):601–612. [PubMed] [Google Scholar]
- Banerjea A. C., Joklik W. K. Reovirus protein sigma 1 translated in vitro, as well as truncated derivatives of it that lack up to two-thirds of its C-terminal portion, exists as two major tetrameric molecular species that differ in electrophoretic mobility. Virology. 1990 Nov;179(1):460–462. doi: 10.1016/0042-6822(90)90315-i. [DOI] [PubMed] [Google Scholar]
- Cech T. R. The chemistry of self-splicing RNA and RNA enzymes. Science. 1987 Jun 19;236(4808):1532–1539. doi: 10.1126/science.2438771. [DOI] [PubMed] [Google Scholar]
- Chen C. J., Banerjea A. C., Harmison G. G., Haglund K., Schubert M. Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication--potential effectiveness against most presently sequenced HIV-1 isolates. Nucleic Acids Res. 1992 Sep 11;20(17):4581–4589. doi: 10.1093/nar/20.17.4581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couture L. A., Stinchcomb D. T. Anti-gene therapy: the use of ribozymes to inhibit gene function. Trends Genet. 1996 Dec;12(12):510–515. doi: 10.1016/s0168-9525(97)81398-4. [DOI] [PubMed] [Google Scholar]
- Dash B. C., Harikrishnan T. A., Goila R., Shahi S., Unwalla H., Husain S., Banerjea A. C. Targeted cleavage of HIV-1 envelope gene by a DNA enzyme and inhibition of HIV-1 envelope-CD4 mediated cell fusion. FEBS Lett. 1998 Jul 24;431(3):395–399. doi: 10.1016/s0014-5793(98)00799-6. [DOI] [PubMed] [Google Scholar]
- Doria M., Klein N., Lucito R., Schneider R. J. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBO J. 1995 Oct 2;14(19):4747–4757. doi: 10.1002/j.1460-2075.1995.tb00156.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dropulić B., Lin N. H., Martin M. A., Jeang K. T. Functional characterization of a U5 ribozyme: intracellular suppression of human immunodeficiency virus type 1 expression. J Virol. 1992 Mar;66(3):1432–1441. doi: 10.1128/jvi.66.3.1432-1441.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flory C. M., Pavco P. A., Jarvis T. C., Lesch M. E., Wincott F. E., Beigelman L., Hunt S. W., 3rd, Schrier D. J. Nuclease-resistant ribozymes decrease stromelysin mRNA levels in rabbit synovium following exogenous delivery to the knee joint. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):754–758. doi: 10.1073/pnas.93.2.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goila R., Banerjea A. C. Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of the coreceptor function by DNA-enzyme. FEBS Lett. 1998 Oct 2;436(2):233–238. doi: 10.1016/s0014-5793(98)01137-5. [DOI] [PubMed] [Google Scholar]
- Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
- Hendry P., McCall M. J. A comparison of the in vitro activity of DNA-armed and all-RNA hammerhead ribozymes. Nucleic Acids Res. 1995 Oct 11;23(19):3928–3936. doi: 10.1093/nar/23.19.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain S., Goila R., Shahi S., Banerjea A. First report of a healthy Indian heterozygous for delta 32 mutant of HIV-1 co-receptor-CCR5 gene. Gene. 1998 Jan 30;207(2):141–147. doi: 10.1016/s0378-1119(97)00617-3. [DOI] [PubMed] [Google Scholar]
- Kidd-Ljunggren K., Oberg M., Kidd A. H. The hepatitis B virus X gene: analysis of functional domain variation and gene phylogeny using multiple sequences. J Gen Virol. 1995 Sep;76(Pt 9):2119–2130. doi: 10.1099/0022-1317-76-9-2119. [DOI] [PubMed] [Google Scholar]
- Kumar V., Jayasuryan N., Kumar R. A truncated mutant (residues 58-140) of the hepatitis B virus X protein retains transactivation function. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5647–5652. doi: 10.1073/pnas.93.11.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lo K. M., Biasolo M. A., Dehni G., Palú G., Haseltine W. A. Inhibition of replication of HIV-1 by retroviral vectors expressing tat-antisense and anti-tat ribozyme RNA. Virology. 1992 Sep;190(1):176–183. doi: 10.1016/0042-6822(92)91203-7. [DOI] [PubMed] [Google Scholar]
- Paik S. Y., Banerjea A., Chen C. J., Ye Z., Harmison G. G., Schubert M. Defective HIV-1 provirus encoding a multitarget-ribozyme inhibits accumulation of spliced and unspliced HIV-1 mRNAs, reduces infectivity of viral progeny, and protects the cells from pathogenesis. Hum Gene Ther. 1997 Jun 10;8(9):1115–1124. doi: 10.1089/hum.1997.8.9-1115. [DOI] [PubMed] [Google Scholar]
- Poeschla E., Corbeau P., Wong-Staal F. Development of HIV vectors for anti-HIV gene therapy. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11395–11399. doi: 10.1073/pnas.93.21.11395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi J. J. Controlled, targeted, intracellular expression of ribozymes: progress and problems. Trends Biotechnol. 1995 Aug;13(8):301–306. doi: 10.1016/S0167-7799(00)88969-6. [DOI] [PubMed] [Google Scholar]
- Rossner M. T. Review: hepatitis B virus X-gene product: a promiscuous transcriptional activator. J Med Virol. 1992 Feb;36(2):101–117. doi: 10.1002/jmv.1890360207. [DOI] [PubMed] [Google Scholar]
- Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarver N., Cantin E. M., Chang P. S., Zaia J. A., Ladne P. A., Stephens D. A., Rossi J. J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990 Mar 9;247(4947):1222–1225. doi: 10.1126/science.2107573. [DOI] [PubMed] [Google Scholar]
- Sczakiel G., Nedbal W. The potential of ribozymes as antiviral agents. Trends Microbiol. 1995 Jun;3(6):213–217. doi: 10.1016/s0966-842x(00)88927-1. [DOI] [PubMed] [Google Scholar]
- Twu J. S., Robinson W. S. Hepatitis B virus X gene can transactivate heterologous viral sequences. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2046–2050. doi: 10.1073/pnas.86.6.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
- Wakita T., Wands J. R. Specific inhibition of hepatitis C virus expression by antisense oligodeoxynucleotides. In vitro model for selection of target sequence. J Biol Chem. 1994 May 13;269(19):14205–14210. [PubMed] [Google Scholar]
- Yamada O., Kraus G., Luznik L., Yu M., Wong-Staal F. A chimeric human immunodeficiency virus type 1 (HIV-1) minimal Rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1. J Virol. 1996 Mar;70(3):1596–1601. doi: 10.1128/jvi.70.3.1596-1601.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
