Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 15;354(Pt 1):57–66. doi: 10.1042/0264-6021:3540057

Identification of synapsin I peptides that insert into lipid membranes.

J J Cheetham 1, S Hilfiker 1, F Benfenati 1, T Weber 1, P Greengard 1, A J Czernik 1
PMCID: PMC1221628  PMID: 11171079

Abstract

The synapsins constitute a family of synaptic vesicle-associated phosphoproteins essential for regulating neurotransmitter release and synaptogenesis. The molecular mechanisms underlying the selective targeting of synapsin I to synaptic vesicles are thought to involve specific protein-protein interactions, while the high-affinity binding to the synaptic vesicle membrane may involve both protein-protein and protein-lipid interactions. The highly hydrophobic N-terminal region of the protein has been shown to bind with high affinity to the acidic phospholipids phosphatidylserine and phosphatidylinositol and to penetrate the hydrophobic core of the lipid bilayer. To precisely identify the domains of synapsin I which mediate the interaction with lipids, synapsin I was bound to liposomes containing the membrane-directed carbene-generating reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and subjected to photolysis. Isolation and N-terminal amino acid sequencing of 125I-labelled synapsin I peptides derived from CNBr cleavage indicated that three distinct regions in the highly conserved domain C of synapsin I insert into the hydrophobic core of the phospholipid bilayer. The boundaries of the regions encompass residues 166-192, 233-258 and 278-327 of bovine synapsin I. These regions are surface-exposed in the crystal structure of domain C of bovine synapsin I and are evolutionarily conserved among isoforms across species. The present data offer a molecular explanation for the high-affinity binding of synapsin I to phospholipid bilayers and synaptic vesicles.

Full Text

The Full Text of this article is available as a PDF (317.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfenati F., Bähler M., Jahn R., Greengard P. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol. 1989 May;108(5):1863–1872. doi: 10.1083/jcb.108.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benfenati F., Greengard P., Brunner J., Bähler M. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J Cell Biol. 1989 May;108(5):1851–1862. doi: 10.1083/jcb.108.5.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benfenati F., Valtorta F., Chieregatti E., Greengard P. Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron. 1992 Feb;8(2):377–386. doi: 10.1016/0896-6273(92)90303-u. [DOI] [PubMed] [Google Scholar]
  4. Benfenati F., Valtorta F., Rossi M. C., Onofri F., Sihra T., Greengard P. Interactions of synapsin I with phospholipids: possible role in synaptic vesicle clustering and in the maintenance of bilayer structures. J Cell Biol. 1993 Dec;123(6 Pt 2):1845–1855. doi: 10.1083/jcb.123.6.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benfenati F., Valtorta F., Rubenstein J. L., Gorelick F. S., Greengard P., Czernik A. J. Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature. 1992 Oct 1;359(6394):417–420. doi: 10.1038/359417a0. [DOI] [PubMed] [Google Scholar]
  6. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brunner J. Photochemical labeling of apolar phase of membranes. Methods Enzymol. 1989;172:628–687. doi: 10.1016/s0076-6879(89)72037-1. [DOI] [PubMed] [Google Scholar]
  8. Brunner J., Semenza G. Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a carbene-generating reagent. Biochemistry. 1981 Dec 8;20(25):7174–7182. doi: 10.1021/bi00528a019. [DOI] [PubMed] [Google Scholar]
  9. Bähler M., Benfenati F., Valtorta F., Czernik A. J., Greengard P. Characterization of synapsin I fragments produced by cysteine-specific cleavage: a study of their interactions with F-actin. J Cell Biol. 1989 May;108(5):1841–1849. doi: 10.1083/jcb.108.5.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bähler M., Greengard P. Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature. 1987 Apr 16;326(6114):704–707. doi: 10.1038/326704a0. [DOI] [PubMed] [Google Scholar]
  11. Ceccaldi P. E., Grohovaz F., Benfenati F., Chieregatti E., Greengard P., Valtorta F. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol. 1995 Mar;128(5):905–912. doi: 10.1083/jcb.128.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cheetham J. J., Nir S., Johnson E., Flanagan T. D., Epand R. M. The effects of membrane physical properties on the fusion of Sendai virus with human erythrocyte ghosts and liposomes. Analysis of kinetics and extent of fusion. J Biol Chem. 1994 Feb 18;269(7):5467–5472. [PubMed] [Google Scholar]
  13. Dathe M., Schümann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 1996 Sep 24;35(38):12612–12622. doi: 10.1021/bi960835f. [DOI] [PubMed] [Google Scholar]
  14. De Camilli P., Benfenati F., Valtorta F., Greengard P. The synapsins. Annu Rev Cell Biol. 1990;6:433–460. doi: 10.1146/annurev.cb.06.110190.002245. [DOI] [PubMed] [Google Scholar]
  15. De Camilli P., Cameron R., Greengard P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol. 1983 May;96(5):1337–1354. doi: 10.1083/jcb.96.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
  17. Esser L., Wang C. R., Hosaka M., Smagula C. S., Südhof T. C., Deisenhofer J. Synapsin I is structurally similar to ATP-utilizing enzymes. EMBO J. 1998 Feb 16;17(4):977–984. doi: 10.1093/emboj/17.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fernandez J., Andrews L., Mische S. M. An improved procedure for enzymatic digestion of polyvinylidene difluoride-bound proteins for internal sequence analysis. Anal Biochem. 1994 Apr;218(1):112–117. doi: 10.1006/abio.1994.1148. [DOI] [PubMed] [Google Scholar]
  19. Fernandez J., DeMott M., Atherton D., Mische S. M. Internal protein sequence analysis: enzymatic digestion for less than 10 micrograms of protein bound to polyvinylidene difluoride or nitrocellulose membranes. Anal Biochem. 1992 Mar;201(2):255–264. doi: 10.1016/0003-2697(92)90336-6. [DOI] [PubMed] [Google Scholar]
  20. Greengard P., Valtorta F., Czernik A. J., Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993 Feb 5;259(5096):780–785. doi: 10.1126/science.8430330. [DOI] [PubMed] [Google Scholar]
  21. Hilfiker S., Pieribone V. A., Czernik A. J., Kao H. T., Augustine G. J., Greengard P. Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):269–279. doi: 10.1098/rstb.1999.0378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hilfiker S., Schweizer F. E., Kao H. T., Czernik A. J., Greengard P., Augustine G. J. Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat Neurosci. 1998 May;1(1):29–35. doi: 10.1038/229. [DOI] [PubMed] [Google Scholar]
  23. Ho M. F., Bähler M., Czernik A. J., Schiebler W., Kézdy F. J., Kaiser E. T., Greengard P. Synapsin I is a highly surface-active molecule. J Biol Chem. 1991 Mar 25;266(9):5600–5607. [PubMed] [Google Scholar]
  24. Hosaka M., Hammer R. E., Südhof T. C. A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron. 1999 Oct;24(2):377–387. doi: 10.1016/s0896-6273(00)80851-x. [DOI] [PubMed] [Google Scholar]
  25. Hosaka M., Südhof T. C. Homo- and heterodimerization of synapsins. J Biol Chem. 1999 Jun 11;274(24):16747–16753. doi: 10.1074/jbc.274.24.16747. [DOI] [PubMed] [Google Scholar]
  26. Hosaka M., Südhof T. C. Synapsin III, a novel synapsin with an unusual regulation by Ca2+. J Biol Chem. 1998 May 29;273(22):13371–13374. doi: 10.1074/jbc.273.22.13371. [DOI] [PubMed] [Google Scholar]
  27. Huttner W. B., Schiebler W., Greengard P., De Camilli P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol. 1983 May;96(5):1374–1388. doi: 10.1083/jcb.96.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jahn R., Schiebler W., Greengard P. A quantitative dot-immunobinding assay for proteins using nitrocellulose membrane filters. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1684–1687. doi: 10.1073/pnas.81.6.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jahn R., Schiebler W., Ouimet C., Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4137–4141. doi: 10.1073/pnas.82.12.4137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kao H. T., Porton B., Czernik A. J., Feng J., Yiu G., Häring M., Benfenati F., Greengard P. A third member of the synapsin gene family. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4667–4672. doi: 10.1073/pnas.95.8.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kao H. T., Porton B., Hilfiker S., Stefani G., Pieribone V. A., DeSalle R., Greengard P. Molecular evolution of the synapsin gene family. J Exp Zool. 1999 Dec 15;285(4):360–377. [PubMed] [Google Scholar]
  32. Kim J., Kim H. Interaction of alpha-lactalbumin with phospholipid vesicles as studied by photoactivated hydrophobic labeling. Biochim Biophys Acta. 1989 Jul 24;983(1):1–8. doi: 10.1016/0005-2736(89)90372-6. [DOI] [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Li L., Chin L. S., Shupliakov O., Brodin L., Sihra T. S., Hvalby O., Jensen V., Zheng D., McNamara J. O., Greengard P. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9235–9239. doi: 10.1073/pnas.92.20.9235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Llinás R., McGuinness T. L., Leonard C. S., Sugimori M., Greengard P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A. 1985 May;82(9):3035–3039. doi: 10.1073/pnas.82.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mangavel C., Maget-Dana R., Tauc P., Brochon J. C., Sy D., Reynaud J. A. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling. Biochim Biophys Acta. 1998 May 28;1371(2):265–283. doi: 10.1016/s0005-2736(98)00026-1. [DOI] [PubMed] [Google Scholar]
  37. Nielander H. B., Onofri F., Schaeffer E., Menegon A., Fesce R., Valtorta F., Greengard P., Benfenati F. Phosphorylation-dependent effects of synapsin IIa on actin polymerization and network formation. Eur J Neurosci. 1997 Dec;9(12):2712–2722. doi: 10.1111/j.1460-9568.1997.tb01700.x. [DOI] [PubMed] [Google Scholar]
  38. Pieribone V. A., Shupliakov O., Brodin L., Hilfiker-Rothenfluh S., Czernik A. J., Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 1995 Jun 8;375(6531):493–497. doi: 10.1038/375493a0. [DOI] [PubMed] [Google Scholar]
  39. Retzinger G. S., Meredith S. C., Lau S. H., Kaiser E. T., Kézdy F. J. A method for probing the affinity of peptides for amphiphilic surfaces. Anal Biochem. 1985 Oct;150(1):131–140. doi: 10.1016/0003-2697(85)90451-8. [DOI] [PubMed] [Google Scholar]
  40. Rosahl T. W., Spillane D., Missler M., Herz J., Selig D. K., Wolff J. R., Hammer R. E., Malenka R. C., Südhof T. C. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature. 1995 Jun 8;375(6531):488–493. doi: 10.1038/375488a0. [DOI] [PubMed] [Google Scholar]
  41. Ryan T. A., Li L., Chin L. S., Greengard P., Smith S. J. Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol. 1996 Sep;134(5):1219–1227. doi: 10.1083/jcb.134.5.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schiebler W., Jahn R., Doucet J. P., Rothlein J., Greengard P. Characterization of synapsin I binding to small synaptic vesicles. J Biol Chem. 1986 Jun 25;261(18):8383–8390. [PubMed] [Google Scholar]
  43. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  44. Semenza G., Brunner J., Wacker H. Biosynthesis and assembly of the largest and major intrinsic polypeptide of the small intestinal brush borders. Ciba Found Symp. 1983;95:92–112. doi: 10.1002/9780470720769.ch7. [DOI] [PubMed] [Google Scholar]
  45. Sogor B. V., Zull J. E. Studies of a serum albumin-liposome complex as a model lipoprotein membrane. Biochim Biophys Acta. 1975 Feb 14;375(3):363–380. doi: 10.1016/0005-2736(75)90353-3. [DOI] [PubMed] [Google Scholar]
  46. Stefani G., Onofri F., Valtorta F., Vaccaro P., Greengard P., Benfenati F. Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. J Physiol. 1997 Nov 1;504(Pt 3):501–515. doi: 10.1111/j.1469-7793.1997.501bd.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Südhof T. C., Czernik A. J., Kao H. T., Takei K., Johnston P. A., Horiuchi A., Kanazir S. D., Wagner M. A., Perin M. S., De Camilli P. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science. 1989 Sep 29;245(4925):1474–1480. doi: 10.1126/science.2506642. [DOI] [PubMed] [Google Scholar]
  48. Takei Y., Harada A., Takeda S., Kobayashi K., Terada S., Noda T., Takahashi T., Hirokawa N. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. J Cell Biol. 1995 Dec;131(6 Pt 2):1789–1800. doi: 10.1083/jcb.131.6.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Terada S., Tsujimoto T., Takei Y., Takahashi T., Hirokawa N. Impairment of inhibitory synaptic transmission in mice lacking synapsin I. J Cell Biol. 1999 May 31;145(5):1039–1048. doi: 10.1083/jcb.145.5.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weber T., Paesold G., Galli C., Mischler R., Semenza G., Brunner J. Evidence for H(+)-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. J Biol Chem. 1994 Jul 15;269(28):18353–18358. [PubMed] [Google Scholar]
  52. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES