Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 15;354(Pt 1):73–78. doi: 10.1042/0264-6021:3540073

Membrane recruitment of DOCK180 by binding to PtdIns(3,4,5)P3.

S Kobayashi 1, T Shirai 1, E Kiyokawa 1, N Mochizuki 1, M Matsuda 1, Y Fukui 1
PMCID: PMC1221630  PMID: 11171081

Abstract

DOCK180 was originally identified as one of two major proteins bound to the Crk oncogene product and became an archetype of the CDM family of proteins, including Ced-5 of Caenorhabditis elegans and Mbc of Drosophila melanogaster. Further study has suggested that DOCK180 is involved in the activation of Rac by the CrkII-p130(Cas) complex. With the use of deletion mutants of DOCK180, we found that the C-terminal region containing a cluster of basic amino acids was required for binding to and activation of Rac. This region showed high amino-acid sequence similarity to the consensus sequence of the phosphoinositide-binding site; this led us to examine whether this basic region binds to phosphoinositides. For this purpose we used PtdIns(3,4,5)P(3)-APB beads, as reported previously [Shirai, Tanaka, Terada, Sawada, Shirai, Hashimoto, Nagata, Iwamatsu, Okawa, Li et al. (1998) Biochim. Biophys. Acta 1402, 292-302]. By using various competitors, we demonstrated the specific binding of DOCK180 to PtdIns(3,4,5)P(3). The expression of active phosphoinositide 3-kinase (PI-3K) did not enhance a DOCK180-induced increase in GTP-Rac; however, the expression of PI-3K translocated DOCK180 to the plasma membrane. Thus DOCK180 contained a phosphoinositide-binding domain, as did the other guanine nucleotide exchange factors with a Dbl homology domain, and was translocated to the plasma membrane on the activation of PI-3K.

Full Text

The Full Text of this article is available as a PDF (237.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghazadeh B., Zhu K., Kubiseski T. J., Liu G. A., Pawson T., Zheng Y., Rosen M. K. Structure and mutagenesis of the Dbl homology domain. Nat Struct Biol. 1998 Dec;5(12):1098–1107. doi: 10.1038/4209. [DOI] [PubMed] [Google Scholar]
  2. Bagrodia S., Taylor S. J., Jordon K. A., Van Aelst L., Cerione R. A. A novel regulator of p21-activated kinases. J Biol Chem. 1998 Sep 11;273(37):23633–23636. doi: 10.1074/jbc.273.37.23633. [DOI] [PubMed] [Google Scholar]
  3. Cheresh D. A., Leng J., Klemke R. L. Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J Cell Biol. 1999 Sep 6;146(5):1107–1116. doi: 10.1083/jcb.146.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corvera S., Czech M. P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 1998 Nov;8(11):442–446. doi: 10.1016/s0962-8924(98)01366-x. [DOI] [PubMed] [Google Scholar]
  5. Erickson M. R., Galletta B. J., Abmayr S. M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol. 1997 Aug 11;138(3):589–603. doi: 10.1083/jcb.138.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Franke B., Akkerman J. W., Bos J. L. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 1997 Jan 15;16(2):252–259. doi: 10.1093/emboj/16.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glaven J. A., Whitehead I., Bagrodia S., Kay R., Cerione R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J Biol Chem. 1999 Jan 22;274(4):2279–2285. doi: 10.1074/jbc.274.4.2279. [DOI] [PubMed] [Google Scholar]
  8. Han J., Luby-Phelps K., Das B., Shu X., Xia Y., Mosteller R. D., Krishna U. M., Falck J. R., White M. A., Broek D. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science. 1998 Jan 23;279(5350):558–560. doi: 10.1126/science.279.5350.558. [DOI] [PubMed] [Google Scholar]
  9. Hasegawa H., Kiyokawa E., Tanaka S., Nagashima K., Gotoh N., Shibuya M., Kurata T., Matsuda M. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996 Apr;16(4):1770–1776. doi: 10.1128/mcb.16.4.1770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hu Q., Klippel A., Muslin A. J., Fantl W. J., Williams L. T. Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science. 1995 Apr 7;268(5207):100–102. doi: 10.1126/science.7701328. [DOI] [PubMed] [Google Scholar]
  11. Kita Y., Kimura K. D., Kobayashi M., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H., Kikkawa U. Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J Cell Sci. 1998 Apr;111(Pt 7):907–915. doi: 10.1242/jcs.111.7.907. [DOI] [PubMed] [Google Scholar]
  12. Kiyokawa E., Hashimoto Y., Kobayashi S., Sugimura H., Kurata T., Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998 Nov 1;12(21):3331–3336. doi: 10.1101/gad.12.21.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kiyokawa E., Hashimoto Y., Kurata T., Sugimura H., Matsuda M. Evidence that DOCK180 up-regulates signals from the CrkII-p130(Cas) complex. J Biol Chem. 1998 Sep 18;273(38):24479–24484. doi: 10.1074/jbc.273.38.24479. [DOI] [PubMed] [Google Scholar]
  14. Kiyokawa E., Mochizuki N., Kurata T., Matsuda M. Role of Crk oncogene product in physiologic signaling. Crit Rev Oncog. 1997;8(4):329–342. doi: 10.1615/critrevoncog.v8.i4.30. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi M., Nagata S., Kita Y., Nakatsu N., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H. Expression of a constitutively active phosphatidylinositol 3-kinase induces process formation in rat PC12 cells. Use of Cre/loxP recombination system. J Biol Chem. 1997 Jun 27;272(26):16089–16092. doi: 10.1074/jbc.272.26.16089. [DOI] [PubMed] [Google Scholar]
  16. Lemmon M. A., Ferguson K. M., Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 1996 May 31;85(5):621–624. doi: 10.1016/s0092-8674(00)81022-3. [DOI] [PubMed] [Google Scholar]
  17. Liu X., Wang H., Eberstadt M., Schnuchel A., Olejniczak E. T., Meadows R. P., Schkeryantz J. M., Janowick D. A., Harlan J. E., Harris E. A. NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell. 1998 Oct 16;95(2):269–277. doi: 10.1016/s0092-8674(00)81757-2. [DOI] [PubMed] [Google Scholar]
  18. Mackay D. J., Hall A. Rho GTPases. J Biol Chem. 1998 Aug 14;273(33):20685–20688. doi: 10.1074/jbc.273.33.20685. [DOI] [PubMed] [Google Scholar]
  19. Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994 Jan 6;367(6458):40–46. doi: 10.1038/367040a0. [DOI] [PubMed] [Google Scholar]
  20. Michiels F., Habets G. G., Stam J. C., van der Kammen R. A., Collard J. G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature. 1995 May 25;375(6529):338–340. doi: 10.1038/375338a0. [DOI] [PubMed] [Google Scholar]
  21. Nimnual A. S., Yatsula B. A., Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 1998 Jan 23;279(5350):560–563. doi: 10.1126/science.279.5350.560. [DOI] [PubMed] [Google Scholar]
  22. Nolan K. M., Barrett K., Lu Y., Hu K. Q., Vincent S., Settleman J. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 1998 Nov 1;12(21):3337–3342. doi: 10.1101/gad.12.21.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ohba Y., Mochizuki N., Matsuo K., Yamashita S., Nakaya M., Hashimoto Y., Hamaguchi M., Kurata T., Nagashima K., Matsuda M. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol. 2000 Aug;20(16):6074–6083. doi: 10.1128/mcb.20.16.6074-6083.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Olson M. F., Sterpetti P., Nagata K., Toksoz D., Hall A. Distinct roles for DH and PH domains in the Lbc oncogene. Oncogene. 1997 Dec 4;15(23):2827–2831. doi: 10.1038/sj.onc.1201594. [DOI] [PubMed] [Google Scholar]
  25. Rameh L. E., Arvidsson A. k., Carraway K. L., 3rd, Couvillon A. D., Rathbun G., Crompton A., VanRenterghem B., Czech M. P., Ravichandran K. S., Burakoff S. J. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem. 1997 Aug 29;272(35):22059–22066. doi: 10.1074/jbc.272.35.22059. [DOI] [PubMed] [Google Scholar]
  26. Reddien P. W., Horvitz H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol. 2000 Mar;2(3):131–136. doi: 10.1038/35004000. [DOI] [PubMed] [Google Scholar]
  27. Shirai T., Tanaka K., Terada Y., Sawada T., Shirai R., Hashimoto Y., Nagata S., Iwamatsu A., Okawa K., Li S. Specific detection of phosphatidylinositol 3,4,5-trisphosphate binding proteins by the PIP3 analogue beads: an application for rapid purification of the PIP3 binding proteins. Biochim Biophys Acta. 1998 Apr 24;1402(3):292–302. doi: 10.1016/s0167-4889(98)00014-7. [DOI] [PubMed] [Google Scholar]
  28. Soisson S. M., Nimnual A. S., Uy M., Bar-Sagi D., Kuriyan J. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell. 1998 Oct 16;95(2):259–268. doi: 10.1016/s0092-8674(00)81756-0. [DOI] [PubMed] [Google Scholar]
  29. Stam J. C., Sander E. E., Michiels F., van Leeuwen F. N., Kain H. E., van der Kammen R. A., Collard J. G. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J Biol Chem. 1997 Nov 7;272(45):28447–28454. doi: 10.1074/jbc.272.45.28447. [DOI] [PubMed] [Google Scholar]
  30. Venkateswarlu K., Oatey P. B., Tavaré J. M., Cullen P. J. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol. 1998 Apr 9;8(8):463–466. doi: 10.1016/s0960-9822(98)70181-2. [DOI] [PubMed] [Google Scholar]
  31. Vojtek A. B., Der C. J. Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998 Aug 7;273(32):19925–19928. doi: 10.1074/jbc.273.32.19925. [DOI] [PubMed] [Google Scholar]
  32. Whitehead I. P., Campbell S., Rossman K. L., Der C. J. Dbl family proteins. Biochim Biophys Acta. 1997 Feb 22;1332(1):F1–23. doi: 10.1016/s0304-419x(96)00040-6. [DOI] [PubMed] [Google Scholar]
  33. Wu Y. C., Horvitz H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature. 1998 Apr 2;392(6675):501–504. doi: 10.1038/33163. [DOI] [PubMed] [Google Scholar]
  34. Yu F. X., Sun H. Q., Janmey P. A., Yin H. L. Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J Biol Chem. 1992 Jul 25;267(21):14616–14621. [PubMed] [Google Scholar]
  35. Zhou M. M., Huang B., Olejniczak E. T., Meadows R. P., Shuker S. B., Miyazaki M., Trüb T., Shoelson S. E., Fesik S. W. Structural basis for IL-4 receptor phosphopeptide recognition by the IRS-1 PTB domain. Nat Struct Biol. 1996 Apr;3(4):388–393. doi: 10.1038/nsb0496-388. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES