Abstract
H2O2 is the usual oxidizing substrate of horseradish peroxidase C (HRP-C). In the absence in the reaction medium of a one-electron donor substrate, H2O2 is able to act as both oxidizing and reducing substrate. However, under these conditions the enzyme also undergoes a progressive loss of activity. There are several pathways that maintain the activity of the enzyme by recovering the ferric form, one of which is the decomposition of H2O2 to molecular oxygen in a similar way to the action of catalase. This production of oxygen has been kinetically characterized with a Clark-type electrode coupled to an oxygraph. HRP-C exhibits a weak catalase-like activity, the initial reaction rate of which is hyperbolically dependent on the H2O2 concentration, with values for K(2) (affinity of the first intermediate, compound I, for H2O2) and k(3) (apparent rate constant controlling catalase activity) of 4.0 +/- 0.6 mM and 1.78 +/- 0.12 s(-1) respectively. Oxygen production by HRP-C is favoured at pH values greater than approx. 6.5; under similar conditions HRP-C is also much less sensitive to inactivation during incubations with H2O2. We therefore suggest that this pathway is a major protective mechanism of HRP-C against such inactivation.
Full Text
The Full Text of this article is available as a PDF (151.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adediran S. A., Lambeir A. M. Kinetics of the reaction of compound II of horseradish peroxidase with hydrogen peroxide to form compound III. Eur J Biochem. 1989 Dec 22;186(3):571–576. doi: 10.1111/j.1432-1033.1989.tb15246.x. [DOI] [PubMed] [Google Scholar]
- Arnao M. B., Acosta M., del Río J. A., García-Cánovas F. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim Biophys Acta. 1990 Mar 29;1038(1):85–89. doi: 10.1016/0167-4838(90)90014-7. [DOI] [PubMed] [Google Scholar]
- Arnao M. B., Acosta M., del Río J. A., Varón R., García-Cánovas F. A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochim Biophys Acta. 1990 Oct 18;1041(1):43–47. doi: 10.1016/0167-4838(90)90120-5. [DOI] [PubMed] [Google Scholar]
- Arnao M. B., García-Cánovas F., Acosta M. Role of the reductant substrates on the inactivation of horseradish peroxidase by m-chloroperoxybenzoic acid. Biochem Mol Biol Int. 1996 May;39(1):97–107. doi: 10.1080/15216549600201101. [DOI] [PubMed] [Google Scholar]
- CHANCE B. The kinetics and stoichiometry of the transition from the primary to the secondary peroxidase peroxide complexes. Arch Biochem Biophys. 1952 Dec;41(2):416–424. doi: 10.1016/0003-9861(52)90470-0. [DOI] [PubMed] [Google Scholar]
- Cai D., Tien M. Kinetic studies on the formation and decomposition of compounds II and III. Reactions of lignin peroxidase with H2O2. J Biol Chem. 1992 Jun 5;267(16):11149–11155. [PubMed] [Google Scholar]
- Childs R. E., Bardsley W. G. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J. 1975 Jan;145(1):93–103. doi: 10.1042/bj1450093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claiborne A., Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem. 1979 May 25;254(10):4245–4252. [PubMed] [Google Scholar]
- Dolphin D., Forman A., Borg D. C., Fajer J., Felton R. H. Compounds I of catalase and horse radish peroxidase: pi-cation radicals. Proc Natl Acad Sci U S A. 1971 Mar;68(3):614–618. doi: 10.1073/pnas.68.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fita I., Rossmann M. G. The active center of catalase. J Mol Biol. 1985 Sep 5;185(1):21–37. doi: 10.1016/0022-2836(85)90180-9. [DOI] [PubMed] [Google Scholar]
- Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997 Dec;4(12):1032–1038. doi: 10.1038/nsb1297-1032. [DOI] [PubMed] [Google Scholar]
- Garcia-Canovas F., Tudela J., Varon R., Vazquez A. M. Experimental methods for kinetic study of suicide substrates. J Enzyme Inhib. 1989;3(2):81–90. doi: 10.3109/14756368909030367. [DOI] [PubMed] [Google Scholar]
- Hernández-Ruiz J., Rodríguez-López J. N., García-Cánovas F., Acosta M., Arnao M. B. Characterization of isoperoxidase-B2 inactivation in etiolated Lupinus albus hypocotyls. Biochim Biophys Acta. 2000 Mar 16;1478(1):78–88. doi: 10.1016/s0167-4838(00)00017-0. [DOI] [PubMed] [Google Scholar]
- Hiner A. N., Hernández-Ruíz J., García-Cánovas F., Smith A. T., Arnao M. B., Acosta M. A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. Eur J Biochem. 1995 Dec 1;234(2):506–512. doi: 10.1111/j.1432-1033.1995.506_b.x. [DOI] [PubMed] [Google Scholar]
- Hiner A. N., Rodríguez-López J. N., Arnao M. B., Lloyd Raven E., García-Cánovas F., Acosta M. Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochem J. 2000 Jun 1;348(Pt 2):321–328. [PMC free article] [PubMed] [Google Scholar]
- Hochman A., Goldberg I. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim Biophys Acta. 1991 Apr 29;1077(3):299–307. doi: 10.1016/0167-4838(91)90544-a. [DOI] [PubMed] [Google Scholar]
- Huwiler M., Jenzer H., Kohler H. The role of compound III in reversible and irreversible inactivation of lactoperoxidase. Eur J Biochem. 1986 Aug 1;158(3):609–614. doi: 10.1111/j.1432-1033.1986.tb09798.x. [DOI] [PubMed] [Google Scholar]
- Jenzer H., Jones W., Kohler H. On the molecular mechanism of lactoperoxidase-catalyzed H2O2 metabolism and irreversible enzyme inactivation. J Biol Chem. 1986 Nov 25;261(33):15550–15556. [PubMed] [Google Scholar]
- Jones P., Middlemiss D. N. Formation of compound I by the reaction of catalase with peroxoacetic acid. Biochem J. 1972 Nov;130(2):411–415. doi: 10.1042/bj1300411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEILIN D., HARTREE E. F. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochem J. 1951 Jun;49(1):88–104. doi: 10.1042/bj0490088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marklund S. Mechanisms of the irreversible inactivation of horseradish peroxidase caused by hydroxymethylhydroperoxide. Arch Biochem Biophys. 1973 Feb;154(2):614–622. doi: 10.1016/0003-9861(73)90016-7. [DOI] [PubMed] [Google Scholar]
- Murthy M. R., Reid T. J., 3rd, Sicignano A., Tanaka N., Rossmann M. G. Structure of beef liver catalase. J Mol Biol. 1981 Oct 25;152(2):465–499. doi: 10.1016/0022-2836(81)90254-0. [DOI] [PubMed] [Google Scholar]
- Nakajima R., Yamazaki I. The conversion of horseradish peroxidase C to a verdohemoprotein by a hydroperoxide derived enzymatically from indole-3-acetic acid and by m-nitroperoxybenzoic acid. J Biol Chem. 1980 Mar 10;255(5):2067–2071. [PubMed] [Google Scholar]
- Nakajima R., Yamazaki I. The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases. J Biol Chem. 1979 Feb 10;254(3):872–878. [PubMed] [Google Scholar]
- Nakajima R., Yamazaki I. The mechanism of oxyperoxidase formation from ferryl peroxidase and hydrogen peroxide. J Biol Chem. 1987 Feb 25;262(6):2576–2581. [PubMed] [Google Scholar]
- Obinger C., Regelsberger G., Strasser G., Burner U., Peschek G. A. Purification and characterization of a homodimeric catalase-peroxidase from the cyanobacterium Anacystis nidulans. Biochem Biophys Res Commun. 1997 Jun 27;235(3):545–552. doi: 10.1006/bbrc.1997.6847. [DOI] [PubMed] [Google Scholar]
- Patterson W. R., Poulos T. L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry. 1995 Apr 4;34(13):4331–4341. doi: 10.1021/bi00013a023. [DOI] [PubMed] [Google Scholar]
- Regelsberger G., Obinger C., Zoder R., Altmann F., Peschek G. A. Purification and characterization of a hydroperoxidase from the cyanobacterium Synechocystis PCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiol Lett. 1999 Jan 1;170(1):1–12. doi: 10.1111/j.1574-6968.1999.tb13348.x. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Lopez J. N., Hernández-Ruiz J., Garcia-Cánovas F., Thorneley R. N., Acosta M., Arnao M. B. The inactivation and catalytic pathways of horseradish peroxidase with m-chloroperoxybenzoic acid. A spectrophotometric and transient kinetic study. J Biol Chem. 1997 Feb 28;272(9):5469–5476. doi: 10.1074/jbc.272.9.5469. [DOI] [PubMed] [Google Scholar]
- Silverman R. B. Mechanism-based enzyme inactivators. Methods Enzymol. 1995;249:240–283. doi: 10.1016/0076-6879(95)49038-8. [DOI] [PubMed] [Google Scholar]
- Sun W., Kadima T. A., Pickard M. A., Dunford H. B. Catalase activity of chloroperoxidase and its interaction with peroxidase activity. Biochem Cell Biol. 1994 Jul-Aug;72(7-8):321–331. doi: 10.1139/o94-045. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Morris D. R., Hager L. P. Chloroperoxidase. VII. Classical peroxidatic, catalatic, and halogenating forms of the enzyme. J Biol Chem. 1970 Jun;245(12):3129–3134. [PubMed] [Google Scholar]
- Waley S. G. Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem J. 1985 May 1;227(3):843–849. doi: 10.1042/bj2270843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waley S. G. Kinetics of suicide substrates. Biochem J. 1980 Mar 1;185(3):771–773. doi: 10.1042/bj1850771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh C. T. Suicide substrates, mechanism-based enzyme inactivators: recent developments. Annu Rev Biochem. 1984;53:493–535. doi: 10.1146/annurev.bi.53.070184.002425. [DOI] [PubMed] [Google Scholar]
- Weinryb I. The behavior of horseradish peroxidase at high hydrogen peroxide concentrations. Biochemistry. 1966 Jun;5(6):2003–2008. doi: 10.1021/bi00870a031. [DOI] [PubMed] [Google Scholar]
- Welinder K. G. Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C. Eur J Biochem. 1979 Jun 1;96(3):483–502. doi: 10.1111/j.1432-1033.1979.tb13061.x. [DOI] [PubMed] [Google Scholar]
- Welinder K. G. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta. 1991 Nov 15;1080(3):215–220. doi: 10.1016/0167-4838(91)90004-j. [DOI] [PubMed] [Google Scholar]