Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 15;354(Pt 1):123–130. doi: 10.1042/0264-6021:3540123

Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice.

J M Armstrong 1, J F Chen 1, M A Schwarzschild 1, S Apasov 1, P T Smith 1, C Caldwell 1, P Chen 1, H Figler 1, G Sullivan 1, S Fink 1, J Linden 1, M Sitkovsky 1
PMCID: PMC1221636  PMID: 11171087

Abstract

Agonist binding to extracellular A2A adenosine receptors (A2ARs) inhibits the activation of virtually all tested functions of T-cells and can induce apoptosis in thymocytes. The evaluation of levels of expression of these immunosuppressive receptors is expected to clarify whether the absence of spare A2ARs (no 'receptor reserve') might be one of the mechanisms of attenuation of the effects of extracellular adenosine on T-cells. A2A transcript is found in T-cells and functional receptors can be demonstrated, but the density of receptor on T-cells is too low to be detected by radioligand binding. Studies of direct radioligand binding to murine brain with the selective A2AR agonist [3H]CGS21680 (2-(4-[(2-carboxyethyl)-phenyl]ethylamino)-5'-N-ethylcarboxamidoadenosine) established that striata levels of A2AR are virtually absent from A2A knock-out mice. Mice that are heterozygous (A2AR+/-) for the A2AR express significantly decreased levels of A2AR. To test for the presence of spare receptors in T-cells we took advantage of this gene dose effect and examined whether the decrease in the number of receptors in thymocytes from A2AR+/- mice was proportionately reflected in a decrease in the functional cAMP response of T-cells to adenosine. cAMP accumulation and apoptosis induced by adenosine and by A2AR agonist are of a lower magnitude in T-cells from A2AR+/- heterozygous mice than in T-cells from A2AR+/+ littermate control mice. These results indicate that there is no A2AR reserve in murine T-cells. Strongly decreased adenosine-triggered cAMP increases were detected in thymocytes from A2AR-/- mice, suggesting that A2B adenosine receptors cannot fully compensate for the loss of A2ARs in murine T-cells. We conclude that the number of A2ARs is the limiting factor in determining the maximal cAMP response of T-lymphocytes to extracellular adenosine, thereby minimizing the immunosuppressive effects of extracellular adenosine.

Full Text

The Full Text of this article is available as a PDF (199.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agneter E., Singer E. A., Sauermann W., Feuerstein T. J. The slope parameter of concentration-response curves used as a touchstone for the existence of spare receptors. Naunyn Schmiedebergs Arch Pharmacol. 1997 Sep;356(3):283–292. doi: 10.1007/pl00005052. [DOI] [PubMed] [Google Scholar]
  2. Apasov S. G., Koshiba M., Chused T. M., Sitkovsky M. V. Effects of extracellular ATP and adenosine on different thymocyte subsets: possible role of ATP-gated channels and G protein-coupled purinergic receptor. J Immunol. 1997 Jun 1;158(11):5095–5105. [PubMed] [Google Scholar]
  3. Apasov S. G., Sitkovsky M. V. The extracellular versus intracellular mechanisms of inhibition of TCR-triggered activation in thymocytes by adenosine under conditions of inhibited adenosine deaminase. Int Immunol. 1999 Feb;11(2):179–189. doi: 10.1093/intimm/11.2.179. [DOI] [PubMed] [Google Scholar]
  4. Apasov S., Koshiba M., Redegeld F., Sitkovsky M. V. Role of extracellular ATP and P1 and P2 classes of purinergic receptors in T-cell development and cytotoxic T lymphocyte effector functions. Immunol Rev. 1995 Aug;146:5–19. doi: 10.1111/j.1600-065x.1995.tb00680.x. [DOI] [PubMed] [Google Scholar]
  5. Baik J. H., Picetti R., Saiardi A., Thiriet G., Dierich A., Depaulis A., Le Meur M., Borrelli E. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature. 1995 Oct 5;377(6548):424–428. doi: 10.1038/377424a0. [DOI] [PubMed] [Google Scholar]
  6. Bognar I. T., Enero M. A. Influence of a receptor reserve on the inhibition by calcium channel blockers of alpha adrenoceptor-mediated responses in rat isolated vascular tissues. J Pharmacol Exp Ther. 1988 May;245(2):673–681. [PubMed] [Google Scholar]
  7. Camps M., Gumà A., Viñals F., Testar X., Palacín M., Zorzano A. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle. Biochem J. 1992 Aug 1;285(Pt 3):993–999. doi: 10.1042/bj2850993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen J. F., Aloyo V. J., Weiss B. Continuous treatment with the D2 dopamine receptor agonist quinpirole decreases D2 dopamine receptors, D2 dopamine receptor messenger RNA and proenkephalin messenger RNA, and increases mu opioid receptors in mouse striatum. Neuroscience. 1993 Jun;54(3):669–680. doi: 10.1016/0306-4522(93)90238-b. [DOI] [PubMed] [Google Scholar]
  9. Chen J. F., Huang Z., Ma J., Zhu J., Moratalla R., Standaert D., Moskowitz M. A., Fink J. S., Schwarzschild M. A. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci. 1999 Nov 1;19(21):9192–9200. doi: 10.1523/JNEUROSCI.19-21-09192.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cox R. F., Meller E., Waszczak B. L. Electrophysiological evidence for a large receptor reserve for inhibition of dorsal raphe neuronal firing by 5-HT1A agonists. Synapse. 1993 Aug;14(4):297–304. doi: 10.1002/syn.890140407. [DOI] [PubMed] [Google Scholar]
  11. Dennis D., Jacobson K., Belardinelli L. Evidence of spare A1-adenosine receptors in guinea pig atrioventricular node. Am J Physiol. 1992 Mar;262(3 Pt 2):H661–H671. doi: 10.1152/ajpheart.1992.262.3.H661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drury D. E., Chong L. K., Ghahramani P., Peachell P. T. Influence of receptor reserve on beta-adrenoceptor-mediated responses in human lung mast cells. Br J Pharmacol. 1998 Jun;124(4):711–718. doi: 10.1038/sj.bjp.0701897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FURCHGOTT R. F. The pharmacology of vascular smooth muscle. Pharmacol Rev. 1955 Jun;7(2):183–265. [PubMed] [Google Scholar]
  14. Graves J. A., Disteche C. M., Toder R. Gene dosage in the evolution and function of mammalian sex chromosomes. Cytogenet Cell Genet. 1998;80(1-4):94–103. doi: 10.1159/000014963. [DOI] [PubMed] [Google Scholar]
  15. Gunst S. J., Stropp J. Q., Flavahan N. A. Analysis of receptor reserves in canine tracheal smooth muscle. J Appl Physiol (1985) 1987 Apr;62(4):1755–1758. doi: 10.1152/jappl.1987.62.4.1755. [DOI] [PubMed] [Google Scholar]
  16. Hashimoto N., Suzuki F., Tamai I., Nikaido H., Kuwajima M., Hayakawa J., Tsuji A. Gene-dose effect on carnitine transport activity in embryonic fibroblasts of JVS mice as a model of human carnitine transporter deficiency. Biochem Pharmacol. 1998 May 15;55(10):1729–1732. doi: 10.1016/s0006-2952(97)00670-9. [DOI] [PubMed] [Google Scholar]
  17. Huang S., Apasov S., Koshiba M., Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997 Aug 15;90(4):1600–1610. [PubMed] [Google Scholar]
  18. Jacobson K. A., Hoffmann C., Cattabeni F., Abbracchio M. P. Adenosine-induced cell death: evidence for receptor-mediated signalling. Apoptosis. 1999 Jun;4(3):197–211. doi: 10.1023/a:1009666707307. [DOI] [PubMed] [Google Scholar]
  19. Jacobson K. A., von Lubitz D. K., Daly J. W., Fredholm B. B. Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci. 1996 Mar;17(3):108–113. doi: 10.1016/0165-6147(96)10002-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaelin-Lang A., Lauterburg T., Burgunder J. M. Expression of adenosine A2a receptors gene in the olfactory bulb and spinal cord of rat and mouse. Neurosci Lett. 1999 Feb 19;261(3):189–191. doi: 10.1016/s0304-3940(99)00022-1. [DOI] [PubMed] [Google Scholar]
  21. Kawasaki H., Springett G. M., Mochizuki N., Toki S., Nakaya M., Matsuda M., Housman D. E., Graybiel A. M. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998 Dec 18;282(5397):2275–2279. doi: 10.1126/science.282.5397.2275. [DOI] [PubMed] [Google Scholar]
  22. Koshiba M., Kojima H., Huang S., Apasov S., Sitkovsky M. V. Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J Biol Chem. 1997 Oct 10;272(41):25881–25889. doi: 10.1074/jbc.272.41.25881. [DOI] [PubMed] [Google Scholar]
  23. Koshiba M., Rosin D. L., Hayashi N., Linden J., Sitkovsky M. V. Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol Pharmacol. 1999 Mar;55(3):614–624. [PubMed] [Google Scholar]
  24. Ledent C., Vaugeois J. M., Schiffmann S. N., Pedrazzini T., El Yacoubi M., Vanderhaeghen J. J., Costentin J., Heath J. K., Vassart G., Parmentier M. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature. 1997 Aug 14;388(6643):674–678. doi: 10.1038/41771. [DOI] [PubMed] [Google Scholar]
  25. Meller E., Bohmaker K. Differential receptor reserve for 5-HT1A receptor-mediated regulation of plasma neuroendocrine hormones. J Pharmacol Exp Ther. 1994 Dec;271(3):1246–1252. [PubMed] [Google Scholar]
  26. Olah M. E., Stiles G. L. Adenosine receptor subtypes: characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol. 1995;35:581–606. doi: 10.1146/annurev.pa.35.040195.003053. [DOI] [PubMed] [Google Scholar]
  27. Paul W. E., Seder R. A. Lymphocyte responses and cytokines. Cell. 1994 Jan 28;76(2):241–251. doi: 10.1016/0092-8674(94)90332-8. [DOI] [PubMed] [Google Scholar]
  28. Peterfreund R. A., MacCollin M., Gusella J., Fink J. S. Characterization and expression of the human A2a adenosine receptor gene. J Neurochem. 1996 Jan;66(1):362–368. doi: 10.1046/j.1471-4159.1996.66010362.x. [DOI] [PubMed] [Google Scholar]
  29. Rohrer D. K., Kobilka B. K. G protein-coupled receptors: functional and mechanistic insights through altered gene expression. Physiol Rev. 1998 Jan;78(1):35–52. doi: 10.1152/physrev.1998.78.1.35. [DOI] [PubMed] [Google Scholar]
  30. Rosin D. L., Robeva A., Woodard R. L., Guyenet P. G., Linden J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol. 1998 Nov 16;401(2):163–186. [PubMed] [Google Scholar]
  31. Schwinger R. H., Böhm M., Erdmann E. Evidence against spare or uncoupled beta-adrenoceptors in the human heart. Am Heart J. 1990 Apr;119(4):899–904. doi: 10.1016/s0002-8703(05)80329-1. [DOI] [PubMed] [Google Scholar]
  32. Shryock J. C., Snowdy S., Baraldi P. G., Cacciari B., Spalluto G., Monopoli A., Ongini E., Baker S. P., Belardinelli L. A2A-adenosine receptor reserve for coronary vasodilation. Circulation. 1998 Aug 18;98(7):711–718. doi: 10.1161/01.cir.98.7.711. [DOI] [PubMed] [Google Scholar]
  33. Tang B., Böttinger E. P., Jakowlew S. B., Bagnall K. M., Mariano J., Anver M. R., Letterio J. J., Wakefield L. M. Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med. 1998 Jul;4(7):802–807. doi: 10.1038/nm0798-802. [DOI] [PubMed] [Google Scholar]
  34. Terasaki W. L., Linden J., Brooker G. Quantitative relationship between beta-adrenergic receptor number and physiologic responses as studied with a long-lasting beta-adrenergic antagonist. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6401–6405. doi: 10.1073/pnas.76.12.6401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van der Ploeg I., Ahlberg S., Parkinson F. E., Olsson R. A., Fredholm B. B. Functional characterization of adenosine A2 receptors in Jurkat cells and PC12 cells using adenosine receptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 1996 Feb;353(3):250–260. doi: 10.1007/BF00168626. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES