Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 15;354(Pt 1):131–139. doi: 10.1042/0264-6021:3540131

The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase.

C Olivares 1, C Jiménez-Cervantes 1, J A Lozano 1, F Solano 1, J C García-Borrón 1
PMCID: PMC1221637  PMID: 11171088

Abstract

Melanin synthesis in mammals is catalysed by at least three enzymic proteins, tyrosinase (monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) and tyrosinase-related proteins (tyrps) 1 and 2, whose genes map to the albino, brown and slaty loci in mice, respectively. Tyrosinase catalyses the rate-limiting generation of L-dopaquinone from L-tyrosine and is also able to oxidize L-dopa to L-dopaquinone. Conversely, mouse tyrp1, but not tyrosinase, catalyses the oxidation of the indolic intermediate 5,6-dihydroxyindole-2-carboxylic acid (DHICA) into the corresponding 5,6-indolequinone-2-carboxylic acid, thus promoting the incorporation of DHICA units into eumelanin. The catalytic activities of the human melanogenic enzymes are still debated. TYRP1 has been reported to lack DHICA oxidase activity, whereas tyrosinase appears to accelerate DHICA consumption, thus raising the question of DHICA metabolism in human melanocytes. Here we have used two different approaches, comparison of the catalytic activities of human melanocytic cell lines expressing the full set of melanogenic enzymes or deficient in TYRP1, and transient expression of TYR and tyr genes in COS7 cells, to demonstrate that human tyrosinase actually functions as a DHICA oxidase, as opposed to the mouse enzyme. Therefore, human tyrosinase displays a broader substrate specificity than its mouse counterpart, and might be at least partially responsible for the incorporation of DHICA units into human eumelanins.

Full Text

The Full Text of this article is available as a PDF (257.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aroca P., Garcia-Borron J. C., Solano F., Lozano J. A. Regulation of mammalian melanogenesis. I: Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase. Biochim Biophys Acta. 1990 Sep 14;1035(3):266–275. doi: 10.1016/0304-4165(90)90088-e. [DOI] [PubMed] [Google Scholar]
  2. Aroca P., Solano F., Salinas C., García-Borrón J. C., Lozano J. A. Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole. Eur J Biochem. 1992 Aug 15;208(1):155–163. doi: 10.1111/j.1432-1033.1992.tb17169.x. [DOI] [PubMed] [Google Scholar]
  3. Bernd A., Ramirez-Bosca A., Kippenberger S., Martinez-Liarte J. H., Holzmann H., Solano F. Levels of dopachrome tautomerase in human melanocytes cultured in vitro. Melanoma Res. 1994 Oct;4(5):287–291. doi: 10.1097/00008390-199410000-00003. [DOI] [PubMed] [Google Scholar]
  4. Boissy R. E., Sakai C., Zhao H., Kobayashi T., Hearing V. J. Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp Dermatol. 1998 Aug;7(4):198–204. doi: 10.1111/j.1600-0625.1998.tb00324.x. [DOI] [PubMed] [Google Scholar]
  5. Bouchard B., Del Marmol V., Jackson I. J., Cherif D., Dubertret L. Molecular characterization of a human tyrosinase-related-protein-2 cDNA. Patterns of expression in melanocytic cells. Eur J Biochem. 1994 Jan 15;219(1-2):127–134. doi: 10.1111/j.1432-1033.1994.tb19922.x. [DOI] [PubMed] [Google Scholar]
  6. Chakraborty A. K., Platt J. T., Kim K. K., Kwon B. S., Bennett D. C., Pawelek J. M. Polymerization of 5,6-dihydroxyindole-2-carboxylic acid to melanin by the pmel 17/silver locus protein. Eur J Biochem. 1996 Feb 15;236(1):180–188. doi: 10.1111/j.1432-1033.1996.t01-1-00180.x. [DOI] [PubMed] [Google Scholar]
  7. Cooksey C. J., Garratt P. J., Land E. J., Pavel S., Ramsden C. A., Riley P. A., Smit N. P. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J Biol Chem. 1997 Oct 17;272(42):26226–26235. doi: 10.1074/jbc.272.42.26226. [DOI] [PubMed] [Google Scholar]
  8. Eberle J., Garbe C., Wang N., Orfanos C. E. Incomplete expression of the tyrosinase gene family (tyrosinase, TRP-1, and TRP-2) in human malignant melanoma cells in vitro. Pigment Cell Res. 1995 Dec;8(6):307–313. doi: 10.1111/j.1600-0749.1995.tb00679.x. [DOI] [PubMed] [Google Scholar]
  9. Giebel L. B., Spritz R. A. RFLP for MboI in the human tyrosinase (TYR) gene detected by PCR. Nucleic Acids Res. 1990 May 25;18(10):3103–3103. doi: 10.1093/nar/18.10.3103-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hunt G., Kyne S., Ito S., Wakamatsu K., Todd C., Thody A. Eumelanin and phaeomelanin contents of human epidermis and cultured melanocytes. Pigment Cell Res. 1995 Aug;8(4):202–208. doi: 10.1111/j.1600-0749.1995.tb00664.x. [DOI] [PubMed] [Google Scholar]
  11. Ito S., Wakamatsu K. Melanin chemistry and melanin precursors in melanoma. J Invest Dermatol. 1989 May;92(5 Suppl):261S–265S. doi: 10.1111/1523-1747.ep13076587. [DOI] [PubMed] [Google Scholar]
  12. Jackson I. J. A cDNA encoding tyrosinase-related protein maps to the brown locus in mouse. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4392–4396. doi: 10.1073/pnas.85.12.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jackson I. J., Chambers D. M., Tsukamoto K., Copeland N. G., Gilbert D. J., Jenkins N. A., Hearing V. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 1992 Feb;11(2):527–535. doi: 10.1002/j.1460-2075.1992.tb05083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jara J. R., Solano F., Lozano J. A. Assays for mammalian tyrosinase: a comparative study. Pigment Cell Res. 1988;1(5):332–339. doi: 10.1111/j.1600-0749.1988.tb00128.x. [DOI] [PubMed] [Google Scholar]
  15. Jergil B., Lindbladh C., Rorsman H., Rosengren E. Dopa oxidation and tyrosine oxygenation by human melanoma tyrosinase. Acta Derm Venereol. 1983;63(6):468–475. [PubMed] [Google Scholar]
  16. Jimenez-Cervantes C., Garcia-Borron J. C., Valverde P., Solano F., Lozano J. A. Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur J Biochem. 1993 Oct 15;217(2):549–556. doi: 10.1111/j.1432-1033.1993.tb18276.x. [DOI] [PubMed] [Google Scholar]
  17. Jimenez-Cervantes C., Valverde P., García-Borrón J. C., Solano F., Lozano J. A. Improved tyrosinase activity stains in polyacrylamide electrophoresis gels. Pigment Cell Res. 1993 Dec;6(6):394–399. doi: 10.1111/j.1600-0749.1993.tb00621.x. [DOI] [PubMed] [Google Scholar]
  18. Jiménez-Cervantes C., Martínez-Esparza M., Solano F., Lozano J. A., García-Borrón J. C. Molecular interactions within the melanogenic complex: formation of heterodimers of tyrosinase and TRP1 from B16 mouse melanoma. Biochem Biophys Res Commun. 1998 Dec 30;253(3):761–767. doi: 10.1006/bbrc.1998.9817. [DOI] [PubMed] [Google Scholar]
  19. Jiménez-Cervantes C., Solano F., Kobayashi T., Urabe K., Hearing V. J., Lozano J. A., García-Borrón J. C. A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem. 1994 Jul 8;269(27):17993–18000. [PubMed] [Google Scholar]
  20. Jiménez M., Tsukamoto K., Hearing V. J. Tyrosinases from two different loci are expressed by normal and by transformed melanocytes. J Biol Chem. 1991 Jan 15;266(2):1147–1156. [PubMed] [Google Scholar]
  21. Kelsall S. R., Le Fur N., Mintz B. Qualitative and quantitative catalog of tyrosinase alternative transcripts in normal murine skin melanocytes as a basis for detecting melanoma-specific changes. Biochem Biophys Res Commun. 1997 Jul 9;236(1):173–177. doi: 10.1006/bbrc.1997.6925. [DOI] [PubMed] [Google Scholar]
  22. Kobayashi T., Imokawa G., Bennett D. C., Hearing V. J. Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem. 1998 Nov 27;273(48):31801–31805. doi: 10.1074/jbc.273.48.31801. [DOI] [PubMed] [Google Scholar]
  23. Kobayashi T., Urabe K., Winder A., Jiménez-Cervantes C., Imokawa G., Brewington T., Solano F., García-Borrón J. C., Hearing V. J. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 1994 Dec 15;13(24):5818–5825. doi: 10.1002/j.1460-2075.1994.tb06925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kwon B. S., Haq A. K., Pomerantz S. H., Halaban R. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7473–7477. doi: 10.1073/pnas.84.21.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kwon B. S., Wakulchik M., Haq A. K., Halaban R., Kestler D. Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1301–1309. doi: 10.1016/s0006-291x(88)81370-6. [DOI] [PubMed] [Google Scholar]
  26. Laskin J. D., Piccinini L. A. Tyrosinase isozyme heterogeneity in differentiating B16/C3 melanoma. J Biol Chem. 1986 Dec 15;261(35):16626–16635. [PubMed] [Google Scholar]
  27. Lee Z. H., Hou L., Moellmann G., Kuklinska E., Antol K., Fraser M., Halaban R., Kwon B. S. Characterization and subcellular localization of human Pmel 17/silver, a 110-kDa (pre)melanosomal membrane protein associated with 5,6,-dihydroxyindole-2-carboxylic acid (DHICA) converting activity. J Invest Dermatol. 1996 Apr;106(4):605–610. doi: 10.1111/1523-1747.ep12345163. [DOI] [PubMed] [Google Scholar]
  28. Loir B., Pérez Sánchez C., Ghanem G., Lozano J. A., García-Borrón J. C., Jiménez-Cervantes C. Expression of the MC1 receptor gene in normal and malignant human melanocytes. A semiquantitative RT-PCR study. Cell Mol Biol (Noisy-le-grand) 1999 Nov;45(7):1083–1092. [PubMed] [Google Scholar]
  29. Martínez-Esparza M., Jiménez-Cervantes C., Beermann F., Aparicio P., Lozano J. A., García-Borrón J. C. Transforming growth factor-beta1 inhibits basal melanogenesis in B16/F10 mouse melanoma cells by increasing the rate of degradation of tyrosinase and tyrosinase-related protein-1. J Biol Chem. 1997 Feb 14;272(7):3967–3972. doi: 10.1074/jbc.272.7.3967. [DOI] [PubMed] [Google Scholar]
  30. Müller G., Ruppert S., Schmid E., Schütz G. Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J. 1988 Sep;7(9):2723–2730. doi: 10.1002/j.1460-2075.1988.tb03126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nishioka K. Conversion of particulate tyrosinase to soluble form and to desialylated tyrosinase in human malignant melanoma. FEBS Lett. 1977 Aug 1;80(1):225–228. doi: 10.1016/0014-5793(77)80445-6. [DOI] [PubMed] [Google Scholar]
  32. Orlow S. J., Osber M. P., Pawelek J. M. Synthesis and characterization of melanins from dihydroxyindole-2-carboxylic acid and dihydroxyindole. Pigment Cell Res. 1992 Sep;5(3):113–121. doi: 10.1111/j.1600-0749.1992.tb00007.x. [DOI] [PubMed] [Google Scholar]
  33. Ozeki H., Ito S., Wakamatsu K., Hirobe T. Chemical characterization of hair melanins in various coat-color mutants of mice. J Invest Dermatol. 1995 Sep;105(3):361–366. doi: 10.1111/1523-1747.ep12320792. [DOI] [PubMed] [Google Scholar]
  34. Riley P. A. The great DOPA mystery: the source and significance of DOPA in phase I melanogenesis. Cell Mol Biol (Noisy-le-grand) 1999 Nov;45(7):951–960. [PubMed] [Google Scholar]
  35. Shibahara S., Tomita Y., Sakakura T., Nager C., Chaudhuri B., Müller R. Cloning and expression of cDNA encoding mouse tyrosinase. Nucleic Acids Res. 1986 Mar 25;14(6):2413–2427. doi: 10.1093/nar/14.6.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Solomon E. I., Lowery M. D. Electronic structure contributions to function in bioinorganic chemistry. Science. 1993 Mar 12;259(5101):1575–1581. doi: 10.1126/science.8384374. [DOI] [PubMed] [Google Scholar]
  37. Tsukamoto K., Jackson I. J., Urabe K., Montague P. M., Hearing V. J. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 1992 Feb;11(2):519–526. doi: 10.1002/j.1460-2075.1992.tb05082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wilczek A., Kondoh H., Mishima Y. Composition of mammalian eumelanins: analyses of DHICA-derived units in pigments from hair and melanoma cells. Pigment Cell Res. 1996 Apr;9(2):63–67. doi: 10.1111/j.1600-0749.1996.tb00090.x. [DOI] [PubMed] [Google Scholar]
  39. Wilczek A., Mishima Y. Inhibitory effects of melanin monomers, dihydroxyindole-2-carboxylic acid (DHICA) and dihydroxyindole (DHI) on mammalian tyrosinase, with a special reference to the role of DHICA/DHI ratio in melanogenesis. Pigment Cell Res. 1995 Apr;8(2):105–112. doi: 10.1111/j.1600-0749.1995.tb00649.x. [DOI] [PubMed] [Google Scholar]
  40. Winder A. J., Harris H. New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem. 1991 Jun 1;198(2):317–326. doi: 10.1111/j.1432-1033.1991.tb16018.x. [DOI] [PubMed] [Google Scholar]
  41. Zhao H., Zhao Y., Nordlund J. J., Boissy R. E. Human TRP-1 has tyrosine hydroxylase but no dopa oxidase activity. Pigment Cell Res. 1994 Jun;7(3):131–140. doi: 10.1111/j.1600-0749.1994.tb00040.x. [DOI] [PubMed] [Google Scholar]
  42. del Marmol V., Ito S., Jackson I., Vachtenheim J., Berr P., Ghanem G., Morandini R., Wakamatsu K., Huez G. TRP-1 expression correlates with eumelanogenesis in human pigment cells in culture. FEBS Lett. 1993 Aug 2;327(3):307–310. doi: 10.1016/0014-5793(93)81010-w. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES