Abstract
Heparan sulphates are highly sulphated linear polysaccharides involved in many cellular functions. Their biological properties stem from their ability to interact with a wide range of proteins. An increasing number of studies, using heparan sulphate-derived oligosaccharides, suggest that specific structural features within the polysaccharide are responsible for ligand recognition and regulation. In the present study, we show that strong anion-exchange HPLC alone, a commonly used technique for purification of heparan sulphate-derived oligosaccharides, may not permit the isolation of highly pure heparan sulphate oligosaccharide species. This was determined by PAGE analysis of hexa-, octa- and decasaccharide samples deemed to be pure by strong anion-exchange HPLC. In addition, subtle differences in the positioning of sulphate groups within heparan sulphate hexasaccharides were impossible to detect by strong anion-exchange HPLC. PAGE analysis on the other hand afforded excellent resolution of these structural isomers. The precise positioning of specific sulphate groups has been implicated in determining the specificity of heparan sulphate interactions and biological activities; hence, the purification of oligosaccharide species that differ in this way becomes an important issue. In this study, we have used strong anion-exchange HPLC and PAGE techniques to allow production of the homogeneous heparan sulphate oligosaccharide species that will be required for the detailed study of structure/activity relationships.
Full Text
The Full Text of this article is available as a PDF (280.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Edge A. S., Spiro R. G. Characterization of novel sequences containing 3-O-sulfated glucosamine in glomerular basement membrane heparan sulfate and localization of sulfated disaccharides to a peripheral domain. J Biol Chem. 1990 Sep 15;265(26):15874–15881. [PubMed] [Google Scholar]
- Feyzi E., Lustig F., Fager G., Spillmann D., Lindahl U., Salmivirta M. Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem. 1997 Feb 28;272(9):5518–5524. doi: 10.1074/jbc.272.9.5518. [DOI] [PubMed] [Google Scholar]
- Feyzi E., Trybala E., Bergström T., Lindahl U., Spillmann D. Structural requirement of heparan sulfate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C. J Biol Chem. 1997 Oct 3;272(40):24850–24857. doi: 10.1074/jbc.272.40.24850. [DOI] [PubMed] [Google Scholar]
- Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem J. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallagher J. T. The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol. 1989 Dec;1(6):1201–1218. doi: 10.1016/s0955-0674(89)80072-9. [DOI] [PubMed] [Google Scholar]
- Guimond S., Maccarana M., Olwin B. B., Lindahl U., Rapraeger A. C. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem. 1993 Nov 15;268(32):23906–23914. [PubMed] [Google Scholar]
- Habuchi H., Suzuki S., Saito T., Tamura T., Harada T., Yoshida K., Kimata K. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem J. 1992 Aug 1;285(Pt 3):805–813. doi: 10.1042/bj2850805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hileman R. E., Smith A. E., Toida T., Linhardt R. J. Preparation and structure of heparin lyase-derived heparan sulfate oligosaccharides. Glycobiology. 1997 Mar;7(2):231–239. doi: 10.1093/glycob/7.2.231. [DOI] [PubMed] [Google Scholar]
- Ishihara M., Takano R., Kanda T., Hayashi K., Hara S., Kikuchi H., Yoshida K. Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. J Biochem. 1995 Dec;118(6):1255–1260. doi: 10.1093/oxfordjournals.jbchem.a125015. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lindahl U., Kusche-Gullberg M., Kjellén L. Regulated diversity of heparan sulfate. J Biol Chem. 1998 Sep 25;273(39):24979–24982. doi: 10.1074/jbc.273.39.24979. [DOI] [PubMed] [Google Scholar]
- Lindahl U., Lidholt K., Spillmann D., Kjellén L. More to "heparin" than anticoagulation. Thromb Res. 1994 Jul 1;75(1):1–32. doi: 10.1016/0049-3848(94)90136-8. [DOI] [PubMed] [Google Scholar]
- Lindahl U., Thunberg L., Bäckström G., Riesenfeld J., Nordling K., Björk I. Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem. 1984 Oct 25;259(20):12368–12376. [PubMed] [Google Scholar]
- Lyon M., Deakin J. A., Mizuno K., Nakamura T., Gallagher J. T. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem. 1994 Apr 15;269(15):11216–11223. [PubMed] [Google Scholar]
- Lyon M., Gallagher J. T. A general method for the detection and mapping of submicrogram quantities of glycosaminoglycan oligosaccharides on polyacrylamide gels by sequential staining with azure A and ammoniacal silver. Anal Biochem. 1990 Feb 15;185(1):63–70. doi: 10.1016/0003-2697(90)90255-8. [DOI] [PubMed] [Google Scholar]
- Lyon M., Gallagher J. T. Bio-specific sequences and domains in heparan sulphate and the regulation of cell growth and adhesion. Matrix Biol. 1998 Nov;17(7):485–493. doi: 10.1016/s0945-053x(98)90096-8. [DOI] [PubMed] [Google Scholar]
- Maccarana M., Casu B., Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem. 1993 Nov 15;268(32):23898–23905. [PubMed] [Google Scholar]
- Marcum J. A., Atha D. H., Fritze L. M., Nawroth P., Stern D., Rosenberg R. D. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J Biol Chem. 1986 Jun 5;261(16):7507–7517. [PubMed] [Google Scholar]
- Merry C. L., Lyon M., Deakin J. A., Hopwood J. J., Gallagher J. T. Highly sensitive sequencing of the sulfated domains of heparan sulfate. J Biol Chem. 1999 Jun 25;274(26):18455–18462. doi: 10.1074/jbc.274.26.18455. [DOI] [PubMed] [Google Scholar]
- Pejler G., Bäckström G., Lindahl U., Paulsson M., Dziadek M., Fujiwara S., Timpl R. Structure and affinity for antithrombin of heparan sulfate chains derived from basement membrane proteoglycans. J Biol Chem. 1987 Apr 15;262(11):5036–5043. [PubMed] [Google Scholar]
- Pervin A., Gallo C., Jandik K. A., Han X. J., Linhardt R. J. Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology. 1995 Feb;5(1):83–95. doi: 10.1093/glycob/5.1.83. [DOI] [PubMed] [Google Scholar]
- Pye D. A., Vives R. R., Turnbull J. E., Hyde P., Gallagher J. T. Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem. 1998 Sep 4;273(36):22936–22942. doi: 10.1074/jbc.273.36.22936. [DOI] [PubMed] [Google Scholar]
- Rice K. G., Kim Y. S., Grant A. C., Merchant Z. M., Linhardt R. J. High-performance liquid chromatographic separation of heparin-derived oligosaccharides. Anal Biochem. 1985 Nov 1;150(2):325–331. doi: 10.1016/0003-2697(85)90518-4. [DOI] [PubMed] [Google Scholar]
- Rosenberg R. D., Shworak N. W., Liu J., Schwartz J. J., Zhang L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J Clin Invest. 1997 May 1;99(9):2062–2070. doi: 10.1172/JCI119377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmivirta M., Lidholt K., Lindahl U. Heparan sulfate: a piece of information. FASEB J. 1996 Sep;10(11):1270–1279. doi: 10.1096/fasebj.10.11.8836040. [DOI] [PubMed] [Google Scholar]
- Stringer S. E., Gallagher J. T. Specific binding of the chemokine platelet factor 4 to heparan sulfate. J Biol Chem. 1997 Aug 15;272(33):20508–20514. doi: 10.1074/jbc.272.33.20508. [DOI] [PubMed] [Google Scholar]
- Turnbull J. E., Fernig D. G., Ke Y., Wilkinson M. C., Gallagher J. T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem. 1992 May 25;267(15):10337–10341. [PubMed] [Google Scholar]
- Turnbull J. E., Gallagher J. T. Oligosaccharide mapping of heparan sulphate by polyacrylamide-gradient-gel electrophoresis and electrotransfer to nylon membrane. Biochem J. 1988 Apr 15;251(2):597–608. doi: 10.1042/bj2510597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turnbull J. E., Hopwood J. J., Gallagher J. T. A strategy for rapid sequencing of heparan sulfate and heparin saccharides. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2698–2703. doi: 10.1073/pnas.96.6.2698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vivès R. R., Pye D. A., Salmivirta M., Hopwood J. J., Lindahl U., Gallagher J. T. Sequence analysis of heparan sulphate and heparin oligosaccharides. Biochem J. 1999 May 1;339(Pt 3):767–773. [PMC free article] [PubMed] [Google Scholar]
- Walker A., Turnbull J. E., Gallagher J. T. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J Biol Chem. 1994 Jan 14;269(2):931–935. [PubMed] [Google Scholar]
- al-Hakim A., Linhardt R. J. Isolation and recovery of acidic oligosaccharides from polyacrylamide gels by semi-dry electrotransfer. Electrophoresis. 1990 Jan;11(1):23–28. doi: 10.1002/elps.1150110106. [DOI] [PubMed] [Google Scholar]