Abstract
The major coagulating fibrinogenase of Deinagkistrdon acutus venom, designated acutobin, was purified by anion-exchange chromatography, gel filtration and reverse-phase HPLC. Approximately 80% of its protein sequence was determined by sequencing the various fragments derived from CNBr cleavage and digestion with endoprotease. Extensive screening of the venom gland cDNA species after amplification by PCR resulted in the isolation of four distinct cDNA clones encoding acutobin and three other serine proteases, designated Dav-PA, Dav-KN and Dav-X. The complete amino acid sequences of these enzymes were deduced from the cDNA sequences. The amino-acid sequence of acutobin contains a single chain of 236 residues including four potential N-glycosylation sites. The purified acutobin (40 kDa) contains approx. 30% carbohydrate by weight, which could be partly removed by N-glycanase. The phylogenetic tree of the complete amino acid sequences of 40 serine proteases from 18 species of Crotalinae shows functional clusters reflecting parallel evolution of the three major venom enzyme subtypes: coagulating enzymes, kininogenases and plasminogen activators. The possible structural elements responsible for the functional specificity of each subtype are discussed.
Full Text
The Full Text of this article is available as a PDF (227.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Au L. C., Lin S. B., Chou J. S., Teh G. W., Chang K. J., Shih C. M. Molecular cloning and sequence analysis of the cDNA for ancrod, a thrombin-like enzyme from the venom of Calloselasma rhodostoma. Biochem J. 1993 Sep 1;294(Pt 2):387–390. doi: 10.1042/bj2940387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braud S., Parry M. A., Maroun R., Bon C., Wisner A. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases. J Biol Chem. 2000 Jan 21;275(3):1823–1828. doi: 10.1074/jbc.275.3.1823. [DOI] [PubMed] [Google Scholar]
- Chang M. C., Huang T. F. Characterization of a thrombin-like enzyme, grambin, from the venom of Trimeresurus gramineus and its in vivo antithrombotic effect. Toxicon. 1995 Aug;33(8):1087–1098. doi: 10.1016/0041-0101(95)00035-k. [DOI] [PubMed] [Google Scholar]
- Chang Y. J., Hamaguchi N., Chang S. C., Ruf W., Shen M. C., Lin S. W. Engineered recombinant factor VII Q217 variants with altered inhibitor specificities. Biochemistry. 1999 Aug 24;38(34):10940–10948. doi: 10.1021/bi990055h. [DOI] [PubMed] [Google Scholar]
- Cheng X., Qian Y., Liu Q., Li B. X., Zhang M., Liu J. Purification, characterization, and cDNA cloning of a new fibrinogenlytic venom protein, Agkisacutacin, from Agkistrodon acutus venom. Biochem Biophys Res Commun. 1999 Nov 19;265(2):530–535. doi: 10.1006/bbrc.1999.1685. [DOI] [PubMed] [Google Scholar]
- Deshimaru M., Ogawa T., Nakashima K., Nobuhisa I., Chijiwa T., Shimohigashi Y., Fukumaki Y., Niwa M., Yamashina I., Hattori S. Accelerated evolution of crotalinae snake venom gland serine proteases. FEBS Lett. 1996 Nov 11;397(1):83–88. doi: 10.1016/s0014-5793(96)01144-1. [DOI] [PubMed] [Google Scholar]
- Fan C. Y., Qian Y. C., Yang S. L., Gong Y. Cloning, sequence analysis and expression in E. coli of the cDNA of the thrombin-like enzyme (pallabin) from the venom of Agkistrodon halys pallas. Biochem Mol Biol Int. 1999 Feb;47(2):217–225. doi: 10.1080/15216549900201223. [DOI] [PubMed] [Google Scholar]
- Hahn B. S., Baek K., Kim W. S., Lee C. S., Chang I. L., Kim Y. S. Molecular cloning of capillary permeability-increasing enzyme-2 from Agkistrodon caliginosus (Korean viper). Toxicon. 1998 Dec;36(12):1887–1893. doi: 10.1016/s0041-0101(98)00109-3. [DOI] [PubMed] [Google Scholar]
- Hahn B. S., Yang K. Y., Park E. M., Chang I. M., Kim Y. S. Purification and molecular cloning of calobin, a thrombin-like enzyme from Agkistrodon caliginosus (Korean viper). J Biochem. 1996 May;119(5):835–843. doi: 10.1093/oxfordjournals.jbchem.a021319. [DOI] [PubMed] [Google Scholar]
- Henschen-Edman A. H., Theodor I., Edwards B. F., Pirkle H. Crotalase, a fibrinogen-clotting snake venom enzyme: primary structure and evidence for a fibrinogen recognition exosite different from thrombin. Thromb Haemost. 1999 Jan;81(1):81–86. [PubMed] [Google Scholar]
- Huang Q. Q., Teng M. K., Niu L. W. Purification and characterization of two fibrinogen-clotting enzymes from five-pace snake (Agkistrodon acutus) venom. Toxicon. 1999 Jul;37(7):999–1013. doi: 10.1016/s0041-0101(98)00228-1. [DOI] [PubMed] [Google Scholar]
- Huang Q. Q., Teng M. K., Niu L. W. Purification and characterization of two fibrinogen-clotting enzymes from five-pace snake (Agkistrodon acutus) venom. Toxicon. 1999 Jul;37(7):999–1013. doi: 10.1016/s0041-0101(98)00228-1. [DOI] [PubMed] [Google Scholar]
- Hung C. C., Huang K. F., Chiou S. H. Characterization of one novel venom protease with beta-fibrinogenase activity from the Taiwan habu (Trimeresurus mucrosquamatus): purification and cDNA sequence analysis. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1707–1715. doi: 10.1006/bbrc.1994.2865. [DOI] [PubMed] [Google Scholar]
- Hunkapiller M. W., Hood L. E. Analysis of phenylthiohydantoins by ultrasensitive gradient high-performance liquid chromatography. Methods Enzymol. 1983;91:486–493. doi: 10.1016/s0076-6879(83)91045-5. [DOI] [PubMed] [Google Scholar]
- Itoh N., Tanaka N., Mihashi S., Yamashina I. Molecular cloning and sequence analysis of cDNA for batroxobin, a thrombin-like snake venom enzyme. J Biol Chem. 1987 Mar 5;262(7):3132–3135. [PubMed] [Google Scholar]
- Komori Y., Nikai T., Sakairi Y., Sugihara H. Characterization of clotting factors from Agkistrodon acutus venom. Int J Biochem. 1988;20(4):387–392. doi: 10.1016/0020-711x(88)90206-6. [DOI] [PubMed] [Google Scholar]
- Liu S. J., Huang Q. Q., Zhu X. Y., Teng M. K., Niu L. W. Purification, characterization, crystallization and preliminary X-ray diffraction of acuthrombin-B, a thrombin-like enzyme from Agkistrodon acutus venom. Acta Crystallogr D Biol Crystallogr. 1999 Jun;55(Pt 6):1193–1197. doi: 10.1107/s0907444998014024. [DOI] [PubMed] [Google Scholar]
- Lottenberg R., Christensen U., Jackson C. M., Coleman P. L. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Methods Enzymol. 1981;80(Pt 100):341–361. doi: 10.1016/s0076-6879(81)80030-4. [DOI] [PubMed] [Google Scholar]
- Markland F. S. Snake venoms and the hemostatic system. Toxicon. 1998 Dec;36(12):1749–1800. doi: 10.1016/s0041-0101(98)00126-3. [DOI] [PubMed] [Google Scholar]
- Matsui T., Sakurai Y., Fujimura Y., Hayashi I., Oh-Ishi S., Suzuki M., Hamako J., Yamamoto Y., Yamazaki J., Kinoshita M. Purification and amino acid sequence of halystase from snake venom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogen and kininogen. Eur J Biochem. 1998 Mar 15;252(3):569–575. doi: 10.1046/j.1432-1327.1998.2520569.x. [DOI] [PubMed] [Google Scholar]
- McMullen B. A., Fujikawa K., Kisiel W. Primary structure of a protein C activator from Agkistrodon contortrix contortrix venom. Biochemistry. 1989 Jan 24;28(2):674–679. doi: 10.1021/bi00428a039. [DOI] [PubMed] [Google Scholar]
- Nakashima K., Nobuhisa I., Deshimaru M., Nakai M., Ogawa T., Shimohigashi Y., Fukumaki Y., Hattori M., Sakaki Y., Hattori S. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5605–5609. doi: 10.1073/pnas.92.12.5605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ouyang C., Teng C. M., Huang T. F. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon. 1992 Sep;30(9):945–966. doi: 10.1016/0041-0101(92)90040-c. [DOI] [PubMed] [Google Scholar]
- Pan H., Du X., Yang G., Zhou Y., Wu X. cDNA cloning and expression of acutin. Biochem Biophys Res Commun. 1999 Feb 16;255(2):412–415. doi: 10.1006/bbrc.1999.0203. [DOI] [PubMed] [Google Scholar]
- Park D., Kim H., Chung K., Kim D. S., Yun Y. Expression and characterization of a novel plasminogen activator from Agkistrodon halys venom. Toxicon. 1998 Dec;36(12):1807–1819. doi: 10.1016/s0041-0101(98)00090-7. [DOI] [PubMed] [Google Scholar]
- Parry M. A., Jacob U., Huber R., Wisner A., Bon C., Bode W. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure. 1998 Sep 15;6(9):1195–1206. doi: 10.1016/s0969-2126(98)00119-1. [DOI] [PubMed] [Google Scholar]
- Perona J. J., Craik C. S. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem. 1997 Nov 28;272(48):29987–29990. doi: 10.1074/jbc.272.48.29987. [DOI] [PubMed] [Google Scholar]
- Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committee's Registry of Exogenous Hemostatic Factors. Thromb Haemost. 1998 Mar;79(3):675–683. [PubMed] [Google Scholar]
- Rezaie A. R., Esmon C. T. Molecular basis of residue 192 participation in determination of coagulation protease specificity. Eur J Biochem. 1996 Dec 15;242(3):477–484. doi: 10.1111/j.1432-1033.1996.477rr.x. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Serrano S. M., Hagiwara Y., Murayama N., Higuchi S., Mentele R., Sampaio C. A., Camargo A. C., Fink E. Purification and characterization of a kinin-releasing and fibrinogen-clotting serine proteinase (KN-BJ) from the venom of Bothrops jararaca, and molecular cloning and sequence analysis of its cDNA. Eur J Biochem. 1998 Feb 1;251(3):845–853. doi: 10.1046/j.1432-1327.1998.2510845.x. [DOI] [PubMed] [Google Scholar]
- Shieh T. C., Kawabata S., Kihara H., Ohno M., Iwanaga S. Amino acid sequence of a coagulant enzyme, flavoxobin, from Trimeresurus flavoviridis venom. J Biochem. 1988 Apr;103(4):596–605. doi: 10.1093/oxfordjournals.jbchem.a122313. [DOI] [PubMed] [Google Scholar]
- Stocker K. Inventory of exogenous hemostatic factors affecting the prothrombin activating pathways. For the Registry of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1994 Feb;71(2):257–260. [PubMed] [Google Scholar]
- Teng C. M., Hsu M. F., Wang J. P. Comparison of kinin-forming and amidolytic activities of four trimucases, oedema-producing and kinin-releasing enzymes, from Trimeresurus mucrosquamatus venom. J Pharm Pharmacol. 1992 Apr;44(4):306–310. doi: 10.1111/j.2042-7158.1992.tb03611.x. [DOI] [PubMed] [Google Scholar]
- Teng C. M., Seegers W. H. Production of factor X and factor Xa variants with thrombin, acutin and by autolysis. Thromb Res. 1981 Apr 1;22(1-2):213–220. doi: 10.1016/0049-3848(81)90323-6. [DOI] [PubMed] [Google Scholar]
- Zhang Y. L., Hervio L., Strandberg L., Madison E. L. Distinct contributions of residue 192 to the specificity of coagulation and fibrinolytic serine proteases. J Biol Chem. 1999 Mar 12;274(11):7153–7156. doi: 10.1074/jbc.274.11.7153. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Gao R., Lee W. H., Zhu S. W., Xiong Y. L., Wang W. Y. Characterization of a fibrinogen-clotting enzyme from Trimeresurus stejnegeri venom, and comparative study with other venom proteases. Toxicon. 1998 Jan;36(1):131–142. doi: 10.1016/s0041-0101(97)00050-0. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Wisner A., Maroun R. C., Choumet V., Xiong Y., Bon C. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling. J Biol Chem. 1997 Aug 15;272(33):20531–20537. doi: 10.1074/jbc.272.33.20531. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Wisner A., Xiong Y., Bon C. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J Biol Chem. 1995 Apr 28;270(17):10246–10255. doi: 10.1074/jbc.270.17.10246. [DOI] [PubMed] [Google Scholar]