Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 15;354(Pt 1):169–177. doi: 10.1042/0264-6021:3540169

As the proliferation promoter noradrenaline induces expression of ICER (induced cAMP early repressor) in proliferative brown adipocytes, ICER may not be a universal tumour suppressor.

H Thonberg 1, E M Lindgren 1, J Nedergaard 1, B Cannon 1
PMCID: PMC1221641  PMID: 11171092

Abstract

The CREM (cAMP-response-element modulator) gene product ICER (induced cAMP early repressor) has been proposed to function as a tumour (cell proliferation) suppressor. To investigate the generality of this concept, the expression pattern of ICER in brown adipocytes was followed; this was critical because brown adipocytes are one of few cell types in which cAMP is associated positively with cell proliferation but negatively with apoptosis. In response to the physiological stimulus of cold (which induces cell proliferation), ICER mRNA levels were increased in brown adipose tissue in vivo. In brown adipocytes in primary culture, ICER gene expression was induced by noradrenaline (norepinephrine) not only in the mature state (where noradrenaline potentiates differentiation), but also in the proliferative state of the cell cultures (where noradrenaline enhances cell proliferation). The induction was mediated via beta-receptors and the cAMP/protein kinase A pathway. The induced ICER appeared to repress its own expression and that of the beta2-adrenoceptor. It is thus evident that also in cell types in which cAMP induces proliferation, and even when these cells are in the proliferative state, ICER expression is induced by the same agents that stimulate proliferation. This can either mean that ICER is not a general tumour suppressor, or that brown adipocytes temporally or spatially avoid this role of ICER.

Full Text

The Full Text of this article is available as a PDF (272.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R., Wen W., Meinkoth J., Taylor S., Montminy M. A refractory phase in cyclic AMP-responsive transcription requires down regulation of protein kinase A. Mol Cell Biol. 1995 Mar;15(3):1826–1832. doi: 10.1128/mcb.15.3.1826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bengtsson T., Cannon B., Nedergaard J. Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes. Biochem J. 2000 May 1;347(Pt 3):643–651. [PMC free article] [PubMed] [Google Scholar]
  3. Billestrup N., Swanson L. W., Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6854–6857. doi: 10.1073/pnas.83.18.6854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodor J., Habener J. F. Role of transcriptional repressor ICER in cyclic AMP-mediated attenuation of cytokine gene expression in human thymocytes. J Biol Chem. 1998 Apr 17;273(16):9544–9551. doi: 10.1074/jbc.273.16.9544. [DOI] [PubMed] [Google Scholar]
  5. Bodor J., Spetz A. L., Strominger J. L., Habener J. F. cAMP inducibility of transcriptional repressor ICER in developing and mature human T lymphocytes. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3536–3541. doi: 10.1073/pnas.93.8.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Briscini L., Tonello C., Dioni L., Carruba M. O., Nisoli E. Bcl-2 and Bax are involved in the sympathetic protection of brown adipocytes from obesity-linked apoptosis. FEBS Lett. 1998 Jul 10;431(1):80–84. doi: 10.1016/s0014-5793(98)00730-3. [DOI] [PubMed] [Google Scholar]
  7. Bronnikov G., Houstek J., Nedergaard J. Beta-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via beta 1 but not via beta 3 adrenoceptors. J Biol Chem. 1992 Jan 25;267(3):2006–2013. [PubMed] [Google Scholar]
  8. Bukowiecki L. J., Géloën A., Collet A. J. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am J Physiol. 1986 Jun;250(6 Pt 1):C880–C887. doi: 10.1152/ajpcell.1986.250.6.C880. [DOI] [PubMed] [Google Scholar]
  9. CAMERON I. L., SMITH R. E. CYTOLOGICAL RESPONSES OF BROWN FAT TISSUE IN COLD-EXPOSED RATS. J Cell Biol. 1964 Oct;23:89–100. doi: 10.1083/jcb.23.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cannon B., Jacobsson A., Rehnmark S., Nedergaard J. Signal transduction in brown adipose tissue recruitment: noradrenaline and beyond. Int J Obes Relat Metab Disord. 1996 Mar;20 (Suppl 3):S36–S42. [PubMed] [Google Scholar]
  11. Chen T. C., Hinton D. R., Zidovetzki R., Hofman F. M. Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest. 1998 Feb;78(2):165–174. [PubMed] [Google Scholar]
  12. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  13. De Cesare D., Fimia G. M., Sassone-Corsi P. Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem Sci. 1999 Jul;24(7):281–285. doi: 10.1016/s0968-0004(99)01414-0. [DOI] [PubMed] [Google Scholar]
  14. Desautels M., Heal S. Differentiation-dependent inhibition of proteolysis by norepinephrine in brown adipocytes. Am J Physiol. 1999 Aug;277(2 Pt 1):E215–E222. doi: 10.1152/ajpendo.1999.277.2.E215. [DOI] [PubMed] [Google Scholar]
  15. Dumont J. E., Jauniaux J. C., Roger P. P. The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci. 1989 Feb;14(2):67–71. doi: 10.1016/0968-0004(89)90046-7. [DOI] [PubMed] [Google Scholar]
  16. Dumont J. E., Lamy F., Roger P., Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev. 1992 Jul;72(3):667–697. doi: 10.1152/physrev.1992.72.3.667. [DOI] [PubMed] [Google Scholar]
  17. Emorine L. J., Marullo S., Delavier-Klutchko C., Kaveri S. V., Durieu-Trautmann O., Strosberg A. D. Structure of the gene for human beta 2-adrenergic receptor: expression and promoter characterization. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6995–6999. doi: 10.1073/pnas.84.20.6995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Foulkes N. S., Borrelli E., Sassone-Corsi P. CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell. 1991 Feb 22;64(4):739–749. doi: 10.1016/0092-8674(91)90503-q. [DOI] [PubMed] [Google Scholar]
  19. Foulkes N. S., Mellström B., Benusiglio E., Sassone-Corsi P. Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature. 1992 Jan 2;355(6355):80–84. doi: 10.1038/355080a0. [DOI] [PubMed] [Google Scholar]
  20. Géloën A., Collet A. J., Guay G., Bukowiecki L. J. Beta-adrenergic stimulation of brown adipocyte proliferation. Am J Physiol. 1988 Jan;254(1 Pt 1):C175–C182. doi: 10.1152/ajpcell.1988.254.1.C175. [DOI] [PubMed] [Google Scholar]
  21. Hordijk P. L., Verlaan I., Jalink K., van Corven E. J., Moolenaar W. H. cAMP abrogates the p21ras-mitogen-activated protein kinase pathway in fibroblasts. J Biol Chem. 1994 Feb 4;269(5):3534–3538. [PubMed] [Google Scholar]
  22. Jacobsson A., Stadler U., Glotzer M. A., Kozak L. P. Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J Biol Chem. 1985 Dec 25;260(30):16250–16254. [PubMed] [Google Scholar]
  23. Jiang L., Gao B., Kunos G. DNA elements and protein factors involved in the transcription of the beta 2-adrenergic receptor gene in rat liver. The negative regulatory role of C/EBP alpha. Biochemistry. 1996 Oct 8;35(40):13136–13146. doi: 10.1021/bi960844o. [DOI] [PubMed] [Google Scholar]
  24. Kameda T., Mizutani T., Minegishi T., Ibuki Y., Miyamoto K. Regulation of cAMP responsive element binding modulator isoforms in cultured rat ovarian granulosa cells. Biochim Biophys Acta. 1999 Apr 14;1445(1):31–38. doi: 10.1016/s0167-4781(99)00018-4. [DOI] [PubMed] [Google Scholar]
  25. Kirshner S., Palmer L., Bodor J., Saji M., Kohn L. D., Singer D. S. Major histocompatibility class I gene transcription in thyrocytes: a series of interacting regulatory DNA sequence elements mediate thyrotropin/cyclic adenosine 3',5'-monophosphate repression. Mol Endocrinol. 2000 Jan;14(1):82–98. doi: 10.1210/mend.14.1.0406. [DOI] [PubMed] [Google Scholar]
  26. Konopka D., Szklarczyk A. W., Filipkowski R. K., Trauzold A., Nowicka D., Hetman M., Kaczmarek L. Plasticity- and neurodegeneration-linked cyclic-AMP responsive element modulator/inducible cyclic-AMP early repressor messenger RNA expression in the rat brain. Neuroscience. 1998 Sep;86(2):499–510. doi: 10.1016/s0306-4522(98)00046-3. [DOI] [PubMed] [Google Scholar]
  27. Kozak U. C., Kopecky J., Teisinger J., Enerbäck S., Boyer B., Kozak L. P. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol Cell Biol. 1994 Jan;14(1):59–67. doi: 10.1128/mcb.14.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lalli E., Sassone-Corsi P. Thyroid-stimulating hormone (TSH)-directed induction of the CREM gene in the thyroid gland participates in the long-term desensitization of the TSH receptor. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9633–9637. doi: 10.1073/pnas.92.21.9633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lamas M., Molina C., Foulkes N. S., Jansen E., Sassone-Corsi P. Ectopic ICER expression in pituitary corticotroph AtT20 cells: effects on morphology, cell cycle, and hormonal production. Mol Endocrinol. 1997 Sep;11(10):1425–1434. doi: 10.1210/mend.11.10.9987. [DOI] [PubMed] [Google Scholar]
  30. Lindquist J. M., Rehnmark S. Ambient temperature regulation of apoptosis in brown adipose tissue. Erk1/2 promotes norepinephrine-dependent cell survival. J Biol Chem. 1998 Nov 13;273(46):30147–30156. doi: 10.1074/jbc.273.46.30147. [DOI] [PubMed] [Google Scholar]
  31. Mao D., Warner E. A., Gurwitch S. A., Dowd D. R. Differential regulation and transcriptional control of immediate early gene expression in forskolin-treated WEHI7.2 thymoma cells. Mol Endocrinol. 1998 Apr;12(4):492–503. doi: 10.1210/mend.12.4.0084. [DOI] [PubMed] [Google Scholar]
  32. Molina C. A., Foulkes N. S., Lalli E., Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 1993 Dec 3;75(5):875–886. doi: 10.1016/0092-8674(93)90532-u. [DOI] [PubMed] [Google Scholar]
  33. Nedergaard J., Herron D., Jacobsson A., Rehnmark S., Cannon B. Norepinephrine as a morphogen?: its unique interaction with brown adipose tissue. Int J Dev Biol. 1995 Oct;39(5):827–837. [PubMed] [Google Scholar]
  34. Nisoli E., Briscini L., Tonello C., De Giuli-Morghen C., Carruba M. O. Tumor necrosis factor-alpha induces apoptosis in rat brown adipocytes. Cell Death Differ. 1997 Dec;4(8):771–778. doi: 10.1038/sj.cdd.4400292. [DOI] [PubMed] [Google Scholar]
  35. Néchad M., Kuusela P., Carneheim C., Björntorp P., Nedergaard J., Cannon B. Development of brown fat cells in monolayer culture. I. Morphological and biochemical distinction from white fat cells in culture. Exp Cell Res. 1983 Nov;149(1):105–118. doi: 10.1016/0014-4827(83)90384-1. [DOI] [PubMed] [Google Scholar]
  36. Penn R. B., Parent J. L., Pronin A. N., Panettieri R. A., Jr, Benovic J. L. Pharmacological inhibition of protein kinases in intact cells: antagonism of beta adrenergic receptor ligand binding by H-89 reveals limitations of usefulness. J Pharmacol Exp Ther. 1999 Feb;288(2):428–437. [PubMed] [Google Scholar]
  37. Picó C., Herron D., Palou A., Jacobsson A., Cannon B., Nedergaard J. Stabilization of the mRNA for the uncoupling protein thermogenin by transcriptional/translational blockade and by noradrenaline in brown adipocytes differentiated in culture: a degradation factor induced by cessation of stimulation? Biochem J. 1994 Aug 15;302(Pt 1):81–86. doi: 10.1042/bj3020081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Razavi R., Ramos J. C., Yehia G., Schlotter F., Molina C. A. ICER-IIgamma is a tumor suppressor that mediates the antiproliferative activity of cAMP. Oncogene. 1998 Dec 10;17(23):3015–3019. doi: 10.1038/sj.onc.1202225. [DOI] [PubMed] [Google Scholar]
  39. Rehnmark S., Nedergaard J. DNA synthesis in mouse brown adipose tissue is under beta-adrenergic control. Exp Cell Res. 1989 Feb;180(2):574–579. doi: 10.1016/0014-4827(89)90086-4. [DOI] [PubMed] [Google Scholar]
  40. Rehnmark S., Néchad M., Herron D., Cannon B., Nedergaard J. Alpha- and beta-adrenergic induction of the expression of the uncoupling protein thermogenin in brown adipocytes differentiated in culture. J Biol Chem. 1990 Sep 25;265(27):16464–16471. [PubMed] [Google Scholar]
  41. Roger P. P., Christophe D., Dumont J. E., Pirson I. The dog thyroid primary culture system: a model of the regulation of function, growth and differentiation expression by cAMP and other well-defined signaling cascades. Eur J Endocrinol. 1997 Dec;137(6):579–598. doi: 10.1530/eje.0.1370579. [DOI] [PubMed] [Google Scholar]
  42. Ruchaud S., Seité P., Foulkes N. S., Sassone-Corsi P., Lanotte M. The transcriptional repressor ICER and cAMP-induced programmed cell death. Oncogene. 1997 Aug 14;15(7):827–836. doi: 10.1038/sj.onc.1201248. [DOI] [PubMed] [Google Scholar]
  43. Sassone-Corsi P. Goals for signal transduction pathways: linking up with transcriptional regulation. EMBO J. 1994 Oct 17;13(20):4717–4728. doi: 10.1002/j.1460-2075.1994.tb06797.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suzuki S., Yamamoto I., Arita J. Mitogen-activated protein kinase-dependent stimulation of proliferation of rat lactotrophs in culture by 3',5'-cyclic adenosine monophosphate. Endocrinology. 1999 Jun;140(6):2850–2858. doi: 10.1210/endo.140.6.6775. [DOI] [PubMed] [Google Scholar]
  45. Tetradis S., Nervina J. M., Nemoto K., Kream B. E. Parathyroid hormone induces expression of the inducible cAMP early repressor in osteoblastic MC3T3-E1 cells and mouse calvariae. J Bone Miner Res. 1998 Dec;13(12):1846–1851. doi: 10.1359/jbmr.1998.13.12.1846. [DOI] [PubMed] [Google Scholar]
  46. Thommesen L., Nørsett K., Sandvik A. K., Hofsli E., Laegreid A. Regulation of inducible cAMP early repressor expression by gastrin and cholecystokinin in the pancreatic cell line AR42J. J Biol Chem. 2000 Feb 11;275(6):4244–4250. doi: 10.1074/jbc.275.6.4244. [DOI] [PubMed] [Google Scholar]
  47. Thonberg H., Zhang S. J., Tvrdik P., Jacobsson A., Nedergaard J. Norepinephrine utilizes alpha 1- and beta-adrenoreceptors synergistically to maximally induce c-fos expression in brown adipocytes. J Biol Chem. 1994 Dec 30;269(52):33179–33186. [PubMed] [Google Scholar]
  48. Uyttersprot N., Costagliola S., Dumont J. E., Miot F. Requirement for cAMP-response element (CRE) binding protein/CRE modulator transcription factors in thyrotropin-induced proliferation of dog thyroid cells in primary culture. Eur J Biochem. 1999 Jan;259(1-2):370–378. doi: 10.1046/j.1432-1327.1999.00049.x. [DOI] [PubMed] [Google Scholar]
  49. Yamashita H., Sato N., Kizaki T., Oh-ishi S., Segawa M., Saitoh D., Ohira Y., Ohno H. Norepinephrine stimulates the expression of fibroblast growth factor 2 in rat brown adipocyte primary culture. Cell Growth Differ. 1995 Nov;6(11):1457–1462. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES