Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):259–266. doi: 10.1042/0264-6021:3540259

Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP).

C Lücke 1, M Rademacher 1, A W Zimmerman 1, H T van Moerkerk 1, J H Veerkamp 1, H Rüterjans 1
PMCID: PMC1221651  PMID: 11171102

Abstract

Recent advances in the characterization of fatty acid-binding proteins (FABPs) by NMR have enabled various research groups to investigate the function of these proteins in aqueous solution. The binding of fatty acid molecules to FABPs, which proceeds through a portal region on the protein surface, is of particular interest. In the present study we have determined the three-dimensional solution structure of human heart-type FABP by multi-dimensional heteronuclear NMR spectroscopy. Subsequently, in combination with data collected on a F57S mutant we have been able to show that different fatty acids induce distinct conformational states of the protein backbone in this portal region, depending on the chain length of the fatty acid ligand. This indicates that during the binding process the protein accommodates the ligand molecule by a "selected-fit" mechanism. In fact, this behaviour appears to be especially pronounced in the heart-type FABP, possibly due to a more rigid backbone structure compared with other FABPs, as suggested by recent NMR relaxation studies. Thus differences in the dynamic behaviours of these proteins may be the key to understanding the variations in ligand affinity and specificity within the FABP family.

Full Text

The Full Text of this article is available as a PDF (243.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banaszak L., Winter N., Xu Z., Bernlohr D. A., Cowan S., Jones T. A. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem. 1994;45:89–151. doi: 10.1016/s0065-3233(08)60639-7. [DOI] [PubMed] [Google Scholar]
  2. Billich S., Wissel T., Kratzin H., Hahn U., Hagenhoff B., Lezius A. G., Spener F. Cloning of a full-length complementary DNA for fatty-acid-binding protein from bovine heart. Eur J Biochem. 1988 Aug 15;175(3):549–556. doi: 10.1111/j.1432-1033.1988.tb14227.x. [DOI] [PubMed] [Google Scholar]
  3. Constantine K. L., Friedrichs M. S., Wittekind M., Jamil H., Chu C. H., Parker R. A., Goldfarb V., Mueller L., Farmer B. T., 2nd Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins. Biochemistry. 1998 Jun 2;37(22):7965–7980. doi: 10.1021/bi980203o. [DOI] [PubMed] [Google Scholar]
  4. Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. 1988;4(1):31–47. doi: 10.1002/prot.340040106. [DOI] [PubMed] [Google Scholar]
  5. Eads J., Sacchettini J. C., Kromminga A., Gordon J. I. Escherichia coli-derived rat intestinal fatty acid binding protein with bound myristate at 1.5 A resolution and I-FABPArg106-->Gln with bound oleate at 1.74 A resolution. J Biol Chem. 1993 Dec 15;268(35):26375–26385. [PubMed] [Google Scholar]
  6. Glatz J. F., Veerkamp J. H. Removal of fatty acids from serum albumin by Lipidex 1000 chromatography. J Biochem Biophys Methods. 1983 Aug;8(1):57–61. doi: 10.1016/0165-022x(83)90021-0. [DOI] [PubMed] [Google Scholar]
  7. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  8. Hodsdon M. E., Cistola D. P. Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278–2290. doi: 10.1021/bi962018l. [DOI] [PubMed] [Google Scholar]
  9. Hohoff C., Börchers T., Rüstow B., Spener F., van Tilbeurgh H. Expression, purification, and crystal structure determination of recombinant human epidermal-type fatty acid binding protein. Biochemistry. 1999 Sep 21;38(38):12229–12239. doi: 10.1021/bi990305u. [DOI] [PubMed] [Google Scholar]
  10. Jagschies G., Reers M., Unterberg C., Spener F. Bovine fatty acid binding proteins. Isolation and characterisation of two cardiac fatty acid binding proteins that are distinct from corresponding hepatic proteins. Eur J Biochem. 1985 Nov 4;152(3):537–545. doi: 10.1111/j.1432-1033.1985.tb09229.x. [DOI] [PubMed] [Google Scholar]
  11. Lassen D., Lücke C., Kveder M., Mesgarzadeh A., Schmidt J. M., Specht B., Lezius A., Spener F., Rüterjans H. Three-dimensional structure of bovine heart fatty-acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. Eur J Biochem. 1995 May 15;230(1):266–280. doi: 10.1111/j.1432-1033.1995.tb20560.x. [DOI] [PubMed] [Google Scholar]
  12. Lowe J. B., Sacchettini J. C., Laposata M., McQuillan J. J., Gordon J. I. Expression of rat intestinal fatty acid-binding protein in Escherichia coli. Purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein. J Biol Chem. 1987 Apr 25;262(12):5931–5937. [PubMed] [Google Scholar]
  13. Lu J., Lin C. L., Tang C., Ponder J. W., Kao J. L., Cistola D. P., Li E. Binding of retinol induces changes in rat cellular retinol-binding protein II conformation and backbone dynamics. J Mol Biol. 2000 Jul 14;300(3):619–632. doi: 10.1006/jmbi.2000.3883. [DOI] [PubMed] [Google Scholar]
  14. Lücke C., Fushman D., Ludwig C., Hamilton J. A., Sacchettini J. C., Rüterjans H. A comparative study of the backbone dynamics of two closely related lipid binding proteins: bovine heart fatty acid binding protein and porcine ileal lipid binding protein. Mol Cell Biochem. 1999 Feb;192(1-2):109–121. [PubMed] [Google Scholar]
  15. Lücke C., Lassen D., Kreienkamp H. J., Spener F., Rüterjans H. Sequence-specific 1H-NMR assignment and determination of the secondary structure of bovine heart fatty-acid-binding protein. Eur J Biochem. 1992 Dec 15;210(3):901–910. doi: 10.1111/j.1432-1033.1992.tb17494.x. [DOI] [PubMed] [Google Scholar]
  16. Lücke C., Zhang F., Rüterjans H., Hamilton J. A., Sacchettini J. C. Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure. 1996 Jul 15;4(7):785–800. doi: 10.1016/s0969-2126(96)00086-x. [DOI] [PubMed] [Google Scholar]
  17. Maatman R. G., van Moerkerk H. T., Nooren I. M., van Zoelen E. J., Veerkamp J. H. Expression of human liver fatty acid-binding protein in Escherichia coli and comparative analysis of its binding characteristics with muscle fatty acid-binding protein. Biochim Biophys Acta. 1994 Aug 25;1214(1):1–10. doi: 10.1016/0005-2760(94)90002-7. [DOI] [PubMed] [Google Scholar]
  18. Müller K. D., Husmann H., Nalik H. P. A new and rapid method for the assay of bacterial fatty acids using high resolution capillary gas chromatography and trimethylsulfonium hydroxide. Zentralbl Bakteriol. 1990 Nov;274(2):174–182. doi: 10.1016/s0934-8840(11)80100-3. [DOI] [PubMed] [Google Scholar]
  19. Nemecz G., Hubbell T., Jefferson J. R., Lowe J. B., Schroeder F. Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-binding proteins. Arch Biochem Biophys. 1991 Apr;286(1):300–309. doi: 10.1016/0003-9861(91)90044-j. [DOI] [PubMed] [Google Scholar]
  20. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  21. Paulussen R. J., van der Logt C. P., Veerkamp J. H. Characterization and binding properties of fatty acid-binding proteins from human, pig, and rat heart. Arch Biochem Biophys. 1988 Aug 1;264(2):533–545. doi: 10.1016/0003-9861(88)90319-0. [DOI] [PubMed] [Google Scholar]
  22. Peeters R. A., Ena J. M., Veerkamp J. H. Expression in Escherichia coli and characterization of the fatty-acid-binding protein from human muscle. Biochem J. 1991 Sep 1;278(Pt 2):361–364. doi: 10.1042/bj2780361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peeters R. A., Veerkamp J. H., Geurts van Kessel A., Kanda T., Ono T. Cloning of the cDNA encoding human skeletal-muscle fatty-acid-binding protein, its peptide sequence and chromosomal localization. Biochem J. 1991 May 15;276(Pt 1):203–207. doi: 10.1042/bj2760203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prinsen C. F., Veerkamp J. H. Fatty acid binding and conformational stability of mutants of human muscle fatty acid-binding protein. Biochem J. 1996 Feb 15;314(Pt 1):253–260. doi: 10.1042/bj3140253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Richieri G. V., Low P. J., Ogata R. T., Kleinfeld A. M. Thermodynamics of fatty acid binding to engineered mutants of the adipocyte and intestinal fatty acid-binding proteins. J Biol Chem. 1998 Mar 27;273(13):7397–7405. doi: 10.1074/jbc.273.13.7397. [DOI] [PubMed] [Google Scholar]
  26. Richieri G. V., Ogata R. T., Kleinfeld A. M. A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J Biol Chem. 1992 Nov 25;267(33):23495–23501. [PubMed] [Google Scholar]
  27. Richieri G. V., Ogata R. T., Kleinfeld A. M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem. 1994 Sep 30;269(39):23918–23930. [PubMed] [Google Scholar]
  28. Richieri G. V., Ogata R. T., Kleinfeld A. M. Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine. J Biol Chem. 1996 May 10;271(19):11291–11300. doi: 10.1074/jbc.271.19.11291. [DOI] [PubMed] [Google Scholar]
  29. Sacchettini J. C., Gordon J. I., Banaszak L. J. Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol. 1989 Jul 20;208(2):327–339. doi: 10.1016/0022-2836(89)90392-6. [DOI] [PubMed] [Google Scholar]
  30. Sacchettini J. C., Scapin G., Gopaul D., Gordon J. I. Refinement of the structure of Escherichia coli-derived rat intestinal fatty acid binding protein with bound oleate to 1.75-A resolution. Correlation with the structures of the apoprotein and the protein with bound palmitate. J Biol Chem. 1992 Nov 25;267(33):23534–23545. [PubMed] [Google Scholar]
  31. Scapin G., Young A. C., Kromminga A., Veerkamp J. H., Gordon J. I., Sacchettini J. C. High resolution X-ray studies of mammalian intestinal and muscle fatty acid-binding proteins provide an opportunity for defining the chemical nature of fatty acid: protein interactions. Mol Cell Biochem. 1993 Jun 9;123(1-2):3–13. doi: 10.1007/BF01076469. [DOI] [PubMed] [Google Scholar]
  32. Simpson M. A., Bernlohr D. A. Analysis of a series of phenylalanine 57 mutants of the adipocyte lipid-binding protein. Biochemistry. 1998 Aug 4;37(31):10980–10986. doi: 10.1021/bi980507a. [DOI] [PubMed] [Google Scholar]
  33. Thompson J., Winter N., Terwey D., Bratt J., Banaszak L. The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J Biol Chem. 1997 Mar 14;272(11):7140–7150. doi: 10.1074/jbc.272.11.7140. [DOI] [PubMed] [Google Scholar]
  34. Veerkamp J. H., Maatman R. G. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res. 1995;34(1):17–52. doi: 10.1016/0163-7827(94)00005-7. [DOI] [PubMed] [Google Scholar]
  35. Veerkamp J. H., Peeters R. A., Maatman R. G. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta. 1991 Jan 4;1081(1):1–24. doi: 10.1016/0005-2760(91)90244-c. [DOI] [PubMed] [Google Scholar]
  36. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  37. Xu Z., Bernlohr D. A., Banaszak L. J. Crystal structure of recombinant murine adipocyte lipid-binding protein. Biochemistry. 1992 Apr 7;31(13):3484–3492. doi: 10.1021/bi00128a024. [DOI] [PubMed] [Google Scholar]
  38. Xu Z., Bernlohr D. A., Banaszak L. J. The adipocyte lipid-binding protein at 1.6-A resolution. Crystal structures of the apoprotein and with bound saturated and unsaturated fatty acids. J Biol Chem. 1993 Apr 15;268(11):7874–7884. [PubMed] [Google Scholar]
  39. Young A. C., Scapin G., Kromminga A., Patel S. B., Veerkamp J. H., Sacchettini J. C. Structural studies on human muscle fatty acid binding protein at 1.4 A resolution: binding interactions with three C18 fatty acids. Structure. 1994 Jun 15;2(6):523–534. doi: 10.1016/s0969-2126(00)00052-6. [DOI] [PubMed] [Google Scholar]
  40. Zanotti G., Scapin G., Spadon P., Veerkamp J. H., Sacchettini J. C. Three-dimensional structure of recombinant human muscle fatty acid-binding protein. J Biol Chem. 1992 Sep 15;267(26):18541–18550. doi: 10.2210/pdb2hmb/pdb. [DOI] [PubMed] [Google Scholar]
  41. Zhang F., Lücke C., Baier L. J., Sacchettini J. C., Hamilton J. A. Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J Biomol NMR. 1997 Apr;9(3):213–228. doi: 10.1023/a:1018666522787. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplemental Data
bj3540259add.pdf (48.1KB, pdf)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES