Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):267–274. doi: 10.1042/0264-6021:3540267

Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B).

P T Todorov 1, R E Hardisty 1, S D Brown 1
PMCID: PMC1221652  PMID: 11171103

Abstract

Myosin VIIA is a motor molecule with a conserved head domain and tail region unique to myosin VIIA, which probably defines its unique function in vivo. In an attempt to further characterize myosin VIIA function we set out to identify molecule(s) that specifically associate with it. We demonstrate that 17 and 55 kDa proteins from mouse kidney and cochlea co-purify with myosin VIIA on affinity columns carrying immobilized anti-myosin VIIA antibody. N-terminal sequencing and immunoblotting analysis identified the 17 kDa protein as calmodulin, whereas MS and immunoblotting analysis identified the 55 kDa protein as microtubule-associated protein-2B (MAP-2B). Myosin VIIA can also be co-immunoprecipitated from kidney homogenate using anti-calmodulin or anti-MAP2 (recognizing isoforms 2A and 2B) antibodies, confirming the strong association between calmodulin and myosin VIIA and between MAP-2B and myosin VIIA. Myosin VIIA binds to calmodulin with an apparent K(d) of 10(-9) M. Scatchard analysis of the binding of myosin VIIA to MAP-2B provided evidence for two binding sites, with K(d) values of 10(-10) and 10(-9) M, which have been mapped to medial and C-terminal tail domains of myosin VIIA. The characterization of the interaction of calmodulin and MAP-2B with myosin VIIA provides new insights into the function of myosin VIIA.

Full Text

The Full Text of this article is available as a PDF (276.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adato A., Weil D., Kalinski H., Pel-Or Y., Ayadi H., Petit C., Korostishevsky M., Bonne-Tamir B. Mutation profile of all 49 exons of the human myosin VIIA gene, and haplotype analysis, in Usher 1B families from diverse origins. Am J Hum Genet. 1997 Oct;61(4):813–821. doi: 10.1086/514899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barylko B., Wagner M. C., Reizes O., Albanesi J. P. Purification and characterization of a mammalian myosin I. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):490–494. doi: 10.1073/pnas.89.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bi K., Roth M. G., Ktistakis N. T. Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr Biol. 1997 May 1;7(5):301–307. doi: 10.1016/s0960-9822(06)00153-9. [DOI] [PubMed] [Google Scholar]
  4. Chen Z. Y., Hasson T., Kelley P. M., Schwender B. J., Schwartz M. F., Ramakrishnan M., Kimberling W. J., Mooseker M. S., Corey D. P. Molecular cloning and domain structure of human myosin-VIIa, the gene product defective in Usher syndrome 1B. Genomics. 1996 Sep 15;36(3):440–448. doi: 10.1006/geno.1996.0489. [DOI] [PubMed] [Google Scholar]
  5. Cheney R. E., O'Shea M. K., Heuser J. E., Coelho M. V., Wolenski J. S., Espreafico E. M., Forscher P., Larson R. E., Mooseker M. S. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell. 1993 Oct 8;75(1):13–23. doi: 10.1016/S0092-8674(05)80080-7. [DOI] [PubMed] [Google Scholar]
  6. Cope M. J., Whisstock J., Rayment I., Kendrick-Jones J. Conservation within the myosin motor domain: implications for structure and function. Structure. 1996 Aug 15;4(8):969–987. doi: 10.1016/s0969-2126(96)00103-7. [DOI] [PubMed] [Google Scholar]
  7. Davare M. A., Dong F., Rubin C. S., Hell J. W. The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J Biol Chem. 1999 Oct 15;274(42):30280–30287. doi: 10.1074/jbc.274.42.30280. [DOI] [PubMed] [Google Scholar]
  8. Dedman J. R., Potter J. D., Jackson R. L., Johnson J. D., Means A. R. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem. 1977 Dec 10;252(23):8415–8422. [PubMed] [Google Scholar]
  9. Drechsel D. N., Hyman A. A., Cobb M. H., Kirschner M. W. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell. 1992 Oct;3(10):1141–1154. doi: 10.1091/mbc.3.10.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Espreafico E. M., Cheney R. E., Matteoli M., Nascimento A. A., De Camilli P. V., Larson R. E., Mooseker M. S. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol. 1992 Dec;119(6):1541–1557. doi: 10.1083/jcb.119.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson F., Walsh J., Mburu P., Varela A., Brown K. A., Antonio M., Beisel K. W., Steel K. P., Brown S. D. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature. 1995 Mar 2;374(6517):62–64. doi: 10.1038/374062a0. [DOI] [PubMed] [Google Scholar]
  12. Harris K. M., Kater S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci. 1994;17:341–371. doi: 10.1146/annurev.ne.17.030194.002013. [DOI] [PubMed] [Google Scholar]
  13. Hasson T., Gillespie P. G., Garcia J. A., MacDonald R. B., Zhao Y., Yee A. G., Mooseker M. S., Corey D. P. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol. 1997 Jun 16;137(6):1287–1307. doi: 10.1083/jcb.137.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hasson T., Walsh J., Cable J., Mooseker M. S., Brown S. D., Steel K. P. Effects of shaker-1 mutations on myosin-VIIa protein and mRNA expression. Cell Motil Cytoskeleton. 1997;37(2):127–138. doi: 10.1002/(SICI)1097-0169(1997)37:2<127::AID-CM5>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  15. Hell J. W., Westenbroek R. E., Breeze L. J., Wang K. K., Chavkin C., Catterall W. A. N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3362–3367. doi: 10.1073/pnas.93.8.3362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang J. D., Brady S. T., Richards B. W., Stenolen D., Resau J. H., Copeland N. G., Jenkins N. A. Direct interaction of microtubule- and actin-based transport motors. Nature. 1999 Jan 21;397(6716):267–270. doi: 10.1038/16722. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Liu X. Z., Walsh J., Mburu P., Kendrick-Jones J., Cope M. J., Steel K. P., Brown S. D. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet. 1997 Jun;16(2):188–190. doi: 10.1038/ng0697-188. [DOI] [PubMed] [Google Scholar]
  19. Liu X. Z., Walsh J., Tamagawa Y., Kitamura K., Nishizawa M., Steel K. P., Brown S. D. Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet. 1997 Nov;17(3):268–269. doi: 10.1038/ng1197-268. [DOI] [PubMed] [Google Scholar]
  20. Liu X., Udovichenko I. P., Brown S. D., Steel K. P., Williams D. S. Myosin VIIa participates in opsin transport through the photoreceptor cilium. J Neurosci. 1999 Aug 1;19(15):6267–6274. doi: 10.1523/JNEUROSCI.19-15-06267.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu X., Vansant G., Udovichenko I. P., Wolfrum U., Williams D. S. Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells. Cell Motil Cytoskeleton. 1997;37(3):240–252. doi: 10.1002/(SICI)1097-0169(1997)37:3<240::AID-CM6>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  22. Mburu P., Liu X. Z., Walsh J., Saw D., Jr, Cope M. J., Gibson F., Kendrick-Jones J., Steel K. P., Brown S. D. Mutation analysis of the mouse myosin VIIA deafness gene. Genes Funct. 1997 Jun;1(3):191–203. doi: 10.1046/j.1365-4624.1997.00020.x. [DOI] [PubMed] [Google Scholar]
  23. Mermall V., Post P. L., Mooseker M. S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science. 1998 Jan 23;279(5350):527–533. doi: 10.1126/science.279.5350.527. [DOI] [PubMed] [Google Scholar]
  24. Pollard T. D., Doberstein S. K., Zot H. G. Myosin-I. Annu Rev Physiol. 1991;53:653–681. doi: 10.1146/annurev.ph.53.030191.003253. [DOI] [PubMed] [Google Scholar]
  25. Porter J. A., Minke B., Montell C. Calmodulin binding to Drosophila NinaC required for termination of phototransduction. EMBO J. 1995 Sep 15;14(18):4450–4459. doi: 10.1002/j.1460-2075.1995.tb00124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Porter J. A., Yu M., Doberstein S. K., Pollard T. D., Montell C. Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science. 1993 Nov 12;262(5136):1038–1042. doi: 10.1126/science.8235618. [DOI] [PubMed] [Google Scholar]
  27. Self T., Mahony M., Fleming J., Walsh J., Brown S. D., Steel K. P. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development. 1998 Feb;125(4):557–566. doi: 10.1242/dev.125.4.557. [DOI] [PubMed] [Google Scholar]
  28. Stone J. S., Leaño S. G., Baker L. P., Rubel E. W. Hair cell differentiation in chick cochlear epithelium after aminoglycoside toxicity: in vivo and in vitro observations. J Neurosci. 1996 Oct 1;16(19):6157–6174. doi: 10.1523/JNEUROSCI.16-19-06157.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tucker T., Fettiplace R. Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron. 1995 Dec;15(6):1323–1335. doi: 10.1016/0896-6273(95)90011-x. [DOI] [PubMed] [Google Scholar]
  30. Walker R. G., Hudspeth A. J. Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog's sacculus. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2203–2207. doi: 10.1073/pnas.93.5.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weil D., Blanchard S., Kaplan J., Guilford P., Gibson F., Walsh J., Mburu P., Varela A., Levilliers J., Weston M. D. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995 Mar 2;374(6517):60–61. doi: 10.1038/374060a0. [DOI] [PubMed] [Google Scholar]
  32. Weil D., Küssel P., Blanchard S., Lévy G., Levi-Acobas F., Drira M., Ayadi H., Petit C. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet. 1997 Jun;16(2):191–193. doi: 10.1038/ng0697-191. [DOI] [PubMed] [Google Scholar]
  33. Wolenski J. S., Hayden S. M., Forscher P., Mooseker M. S. Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry. J Cell Biol. 1993 Aug;122(3):613–621. doi: 10.1083/jcb.122.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamoah E. N., Lumpkin E. A., Dumont R. A., Smith P. J., Hudspeth A. J., Gillespie P. G. Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci. 1998 Jan 15;18(2):610–624. doi: 10.1523/JNEUROSCI.18-02-00610.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. el-Amraoui A., Sahly I., Picaud S., Sahel J., Abitbol M., Petit C. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum Mol Genet. 1996 Aug;5(8):1171–1178. doi: 10.1093/hmg/5.8.1171. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES