Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):275–283. doi: 10.1042/0264-6021:3540275

Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization.

S M Warden 1, C Richardson 1, J O'Donnell Jr 1, D Stapleton 1, B E Kemp 1, L A Witters 1
PMCID: PMC1221653  PMID: 11171104

Abstract

The AMP-activated protein kinase (AMPK) is a ubiquitous mammalian protein kinase important in the adaptation of cells to metabolic stress. The enzyme is a heterotrimer, consisting of a catalytic alpha subunit and regulatory beta and gamma subunits, each of which is a member of a larger isoform family. The enzyme is allosterically regulated by AMP and by phosphorylation of the alpha subunit. The beta subunit is post-translationally modified by myristoylation and multi-site phosphorylation. In the present study, we have examined the impact of post-translational modification of the beta-1 subunit on enzyme activity, heterotrimer assembly and subcellular localization, using site-directed mutagenesis and expression of subunits in mammalian cells. Removal of the myristoylation site (G2A mutant) results in a 4-fold activation of the enzyme and relocalization of the beta subunit from a particulate extranuclear distribution to a more homogenous cell distribution. Mutation of the serine-108 phosphorylation site to alanine is associated with enzyme inhibition, but no change in cell localization. In contrast, the phosphorylation site mutations, SS24, 25AA and S182A, while having no effects on enzyme activity, are associated with nuclear redistribution of the subunit. Taken together, these results indicate that both myristoylation and phosphorylation of the beta subunit of AMPK modulate enzyme activity and subunit cellular localization, increasing the complexity of AMPK regulation.

Full Text

The Full Text of this article is available as a PDF (295.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen Z. P., Mitchelhill K. I., Michell B. J., Stapleton D., Rodriguez-Crespo I., Witters L. A., Power D. A., Ortiz de Montellano P. R., Kemp B. E. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 1999 Jan 29;443(3):285–289. doi: 10.1016/s0014-5793(98)01705-0. [DOI] [PubMed] [Google Scholar]
  2. Chen Z., Heierhorst J., Mann R. J., Mitchelhill K. I., Michell B. J., Witters L. A., Lynch G. S., Kemp B. E., Stapleton D. Expression of the AMP-activated protein kinase beta1 and beta2 subunits in skeletal muscle. FEBS Lett. 1999 Oct 29;460(2):343–348. doi: 10.1016/s0014-5793(99)01371-x. [DOI] [PubMed] [Google Scholar]
  3. Cheung P. C., Salt I. P., Davies S. P., Hardie D. G., Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J. 2000 Mar 15;346(Pt 3):659–669. [PMC free article] [PubMed] [Google Scholar]
  4. Crute B. E., Seefeld K., Gamble J., Kemp B. E., Witters L. A. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 1998 Dec 25;273(52):35347–35354. doi: 10.1074/jbc.273.52.35347. [DOI] [PubMed] [Google Scholar]
  5. Davies S. P., Hawley S. A., Woods A., Carling D., Haystead T. A., Hardie D. G. Purification of the AMP-activated protein kinase on ATP-gamma-sepharose and analysis of its subunit structure. Eur J Biochem. 1994 Jul 15;223(2):351–357. doi: 10.1111/j.1432-1033.1994.tb19001.x. [DOI] [PubMed] [Google Scholar]
  6. Dyck J. R., Gao G., Widmer J., Stapleton D., Fernandez C. S., Kemp B. E., Witters L. A. Regulation of 5'-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. J Biol Chem. 1996 Jul 26;271(30):17798–17803. doi: 10.1074/jbc.271.30.17798. [DOI] [PubMed] [Google Scholar]
  7. Gao G., Fernandez C. S., Stapleton D., Auster A. S., Widmer J., Dyck J. R., Kemp B. E., Witters L. A. Non-catalytic beta- and gamma-subunit isoforms of the 5'-AMP-activated protein kinase. J Biol Chem. 1996 Apr 12;271(15):8675–8681. doi: 10.1074/jbc.271.15.8675. [DOI] [PubMed] [Google Scholar]
  8. Hardie D. G., Carling D., Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998;67:821–855. doi: 10.1146/annurev.biochem.67.1.821. [DOI] [PubMed] [Google Scholar]
  9. Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
  10. Kemp B. E., Mitchelhill K. I., Stapleton D., Michell B. J., Chen Z. P., Witters L. A. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci. 1999 Jan;24(1):22–25. doi: 10.1016/s0968-0004(98)01340-1. [DOI] [PubMed] [Google Scholar]
  11. Mitchelhill K. I., Michell B. J., House C. M., Stapleton D., Dyck J., Gamble J., Ullrich C., Witters L. A., Kemp B. E. Posttranslational modifications of the 5'-AMP-activated protein kinase beta1 subunit. J Biol Chem. 1997 Sep 26;272(39):24475–24479. doi: 10.1074/jbc.272.39.24475. [DOI] [PubMed] [Google Scholar]
  12. Mitchelhill K. I., Stapleton D., Gao G., House C., Michell B., Katsis F., Witters L. A., Kemp B. E. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem. 1994 Jan 28;269(4):2361–2364. [PubMed] [Google Scholar]
  13. Resh M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1999 Aug 12;1451(1):1–16. doi: 10.1016/s0167-4889(99)00075-0. [DOI] [PubMed] [Google Scholar]
  14. Saha A. K., Schwarsin A. J., Roduit R., Masse F., Kaushik V., Tornheim K., Prentki M., Ruderman N. B. Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside. J Biol Chem. 2000 Aug 11;275(32):24279–24283. doi: 10.1074/jbc.C000291200. [DOI] [PubMed] [Google Scholar]
  15. Salt I., Celler J. W., Hawley S. A., Prescott A., Woods A., Carling D., Hardie D. G. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J. 1998 Aug 15;334(Pt 1):177–187. doi: 10.1042/bj3340177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stapleton D., Gao G., Michell B. J., Widmer J., Mitchelhill K., Teh T., House C. M., Witters L. A., Kemp B. E. Mammalian 5'-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. J Biol Chem. 1994 Nov 25;269(47):29343–29346. [PubMed] [Google Scholar]
  17. Stapleton D., Mitchelhill K. I., Gao G., Widmer J., Michell B. J., Teh T., House C. M., Fernandez C. S., Cox T., Witters L. A. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996 Jan 12;271(2):611–614. doi: 10.1074/jbc.271.2.611. [DOI] [PubMed] [Google Scholar]
  18. Stein S. C., Woods A., Jones N. A., Davison M. D., Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J. 2000 Feb 1;345(Pt 3):437–443. [PMC free article] [PubMed] [Google Scholar]
  19. Thornton C., Snowden M. A., Carling D. Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem. 1998 May 15;273(20):12443–12450. doi: 10.1074/jbc.273.20.12443. [DOI] [PubMed] [Google Scholar]
  20. Turnley A. M., Stapleton D., Mann R. J., Witters L. A., Kemp B. E., Bartlett P. F. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem. 1999 Apr;72(4):1707–1716. doi: 10.1046/j.1471-4159.1999.721707.x. [DOI] [PubMed] [Google Scholar]
  21. Witters L. A., Kemp B. E. Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5'-AMP-activated protein kinase. J Biol Chem. 1992 Feb 15;267(5):2864–2867. [PubMed] [Google Scholar]
  22. Woods A., Azzout-Marniche D., Foretz M., Stein S. C., Lemarchand P., Ferré P., Foufelle F., Carling D. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000 Sep;20(18):6704–6711. doi: 10.1128/mcb.20.18.6704-6711.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yonemoto W., McGlone M. L., Taylor S. S. N-myristylation of the catalytic subunit of cAMP-dependent protein kinase conveys structural stability. J Biol Chem. 1993 Feb 5;268(4):2348–2352. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES