Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):291–299. doi: 10.1042/0264-6021:3540291

Structural characterization and thermal stability of Notothenia coriiceps metallothionein.

S D'Auria 1, V Carginale 1, R Scudiero 1, O Crescenzi 1, D Di Maro 1, P A Temussi 1, E Parisi 1, C Capasso 1
PMCID: PMC1221655  PMID: 11171106

Abstract

Fish and mammalian metallothioneins (MTs) differ in the amino acid residues placed between their conserved cysteines. We have expressed the MT of an Antarctic fish, Notothenia coriiceps, and characterized it by means of multinuclear NMR spectroscopy. Overall, the architecture of the fish MT is very similar to that of mammalian MTs. However, NMR spectroscopy shows that the dynamic behaviour of the two domains is markedly different. With the aid of absorption and CD spectroscopies, we studied the conformational and electronic features of fish and mouse recombinant Cd-MT and the changes produced in these proteins by heating. When the temperature was increased from 20 to 90 degrees C, the Cd-thiolate chromophore absorbance at 254 nm of mouse MT was not modified up to 60 degrees C, whereas the absorbance of fish MT decreased significantly starting from 30 degrees C. The CD spectra also changed quite considerably with temperature, with a gradual decrease of the positive band at 260 nm that was more pronounced for fish than for mouse MT. The differential effect of temperature on fish and mouse MTs may reflect a different stability of metal-thiolate clusters of the two proteins. Such a conclusion is also corroborated by results showing differences in metal mobility between fish and mouse Zn-MT.

Full Text

The Full Text of this article is available as a PDF (193.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arseniev A., Schultze P., Wörgötter E., Braun W., Wagner G., Vasák M., Kägi J. H., Wüthrich K. Three-dimensional structure of rabbit liver [Cd7]metallothionein-2a in aqueous solution determined by nuclear magnetic resonance. J Mol Biol. 1988 Jun 5;201(3):637–657. doi: 10.1016/0022-2836(88)90644-4. [DOI] [PubMed] [Google Scholar]
  2. Bargelloni L., Scudiero R., Parisi E., Carginale V., Capasso C., Patarnello T. Metallothioneins in antarctic fish: evidence for independent duplication and gene conversion. Mol Biol Evol. 1999 Jul;16(7):885–897. doi: 10.1093/oxfordjournals.molbev.a026178. [DOI] [PubMed] [Google Scholar]
  3. Carginale V., Scudiero R., Capasso C., Capasso A., Kille P., di Prisco G., Parisi E. Cadmium-induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels. Biochem J. 1998 Jun 1;332(Pt 2):475–481. doi: 10.1042/bj3320475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De S. K., Dey S. K., Andrews G. K. Cadmium teratogenicity and its relationship with metallothionein gene expression in midgestation mouse embryos. Toxicology. 1990 Oct;64(1):89–104. doi: 10.1016/0300-483x(90)90102-m. [DOI] [PubMed] [Google Scholar]
  5. Debec A., Mokdad R., Wegnez M. Metallothioneins and resistance to cadmium poisoning in Drosophila cells. Biochem Biophys Res Commun. 1985 Feb 28;127(1):143–152. doi: 10.1016/s0006-291x(85)80137-6. [DOI] [PubMed] [Google Scholar]
  6. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  7. Iszard M. B., Liu J., Klaassen C. D. Effect of several metallothionein inducers on oxidative stress defense mechanisms in rats. Toxicology. 1995 Dec 15;104(1-3):25–33. doi: 10.1016/0300-483x(95)03118-y. [DOI] [PubMed] [Google Scholar]
  8. Jiang L. J., Maret W., Vallee B. L. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3483–3488. doi: 10.1073/pnas.95.7.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KAGI J. H., VALEE B. L. Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem. 1960 Dec;235:3460–3465. [PubMed] [Google Scholar]
  10. Kille P., Hemmings A., Lunney E. A. Memories of metallothionein. Biochim Biophys Acta. 1994 Apr 13;1205(2):151–161. doi: 10.1016/0167-4838(94)90228-3. [DOI] [PubMed] [Google Scholar]
  11. Kägi J. H., Schäffer A. Biochemistry of metallothionein. Biochemistry. 1988 Nov 15;27(23):8509–8515. doi: 10.1021/bi00423a001. [DOI] [PubMed] [Google Scholar]
  12. Kägi J. H., Vasák M., Lerch K., Gilg D. E., Hunziker P., Bernhard W. R., Good M. Structure of mammalian metallothionein. Environ Health Perspect. 1984 Mar;54:93–103. doi: 10.1289/ehp.54-1568188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Maret W., Vallee B. L. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3478–3482. doi: 10.1073/pnas.95.7.3478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  16. Messerle B. A., Schäffer A., Vasák M., Kägi J. H., Wüthrich K. Comparison of the solution conformations of human [Zn7]-metallothionein-2 and [Cd7]-metallothionein-2 using nuclear magnetic resonance spectroscopy. J Mol Biol. 1992 May 20;225(2):433–443. doi: 10.1016/0022-2836(92)90930-i. [DOI] [PubMed] [Google Scholar]
  17. Messerle B. A., Schäffer A., Vasák M., Kägi J. H., Wüthrich K. Three-dimensional structure of human [113Cd7]metallothionein-2 in solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol. 1990 Aug 5;214(3):765–779. doi: 10.1016/0022-2836(90)90291-S. [DOI] [PubMed] [Google Scholar]
  18. Miura T., Muraoka S., Ogiso T. Antioxidant activity of metallothionein compared with reduced glutathione. Life Sci. 1997;60(21):PL–309. doi: 10.1016/s0024-3205(97)00156-2. [DOI] [PubMed] [Google Scholar]
  19. Pan P. K., Hou F. Y., Cody C. W., Huang P. C. Substitution of glutamic acids for the conserved lysines in the alpha domain affects metal binding in both the alpha and beta domains of mammalian metallothionein. Biochem Biophys Res Commun. 1994 Jul 15;202(1):621–628. doi: 10.1006/bbrc.1994.1973. [DOI] [PubMed] [Google Scholar]
  20. Pande J., Vasák M., Kägi J. H. Interaction of lysine residues with the metal thiolate clusters in metallothionein. Biochemistry. 1985 Nov 5;24(23):6717–6722. doi: 10.1021/bi00344a062. [DOI] [PubMed] [Google Scholar]
  21. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  22. Presta A., Stillman M. J. Chiral copper(I)-thiolate clusters in metallothionein and glutathione. Chirality. 1994;6(7):521–530. doi: 10.1002/chir.530060703. [DOI] [PubMed] [Google Scholar]
  23. Robbins A. H., Stout C. D. X-ray structure of metallothionein. Methods Enzymol. 1991;205:485–502. doi: 10.1016/0076-6879(91)05134-h. [DOI] [PubMed] [Google Scholar]
  24. Rupp H., Weser U. Circular dichroism of metallothioneins. A structural approach. Biochim Biophys Acta. 1978 Mar 28;533(1):209–226. doi: 10.1016/0005-2795(78)90565-2. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schultze P., Wörgötter E., Braun W., Wagner G., Vasák M., Kägi J. H., Wüthrich K. Conformation of [Cd7]-metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol. 1988 Sep 5;203(1):251–268. doi: 10.1016/0022-2836(88)90106-4. [DOI] [PubMed] [Google Scholar]
  27. Scudiero R., Carginale V., Riggio M., Capasso C., Capasso A., Kille P., di Prisco G., Parisi E. Difference in hepatic metallothionein content in Antarctic red-blooded and haemoglobinless fish: undetectable metallothionein levels in haemoglobinless fish is accompanied by accumulation of untranslated metallothionein mRNA. Biochem J. 1997 Feb 15;322(Pt 1):207–211. doi: 10.1042/bj3220207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stillman M. J., Cai W., Zelazowski A. J. Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd2+. J Biol Chem. 1987 Apr 5;262(10):4538–4548. [PubMed] [Google Scholar]
  29. Stillman M. J., Zelazowski A. J. Domain specificity in metal binding to metallothionein. A circular dichroism and magnetic circular dichroism study of cadmium and zinc binding at temperature extremes. J Biol Chem. 1988 May 5;263(13):6128–6133. [PubMed] [Google Scholar]
  30. Vallee B. L. The function of metallothionein. Neurochem Int. 1995 Jul;27(1):23–33. doi: 10.1016/0197-0186(94)00165-q. [DOI] [PubMed] [Google Scholar]
  31. Vasák M., Berger C., Kägi J. H. Dynamic structure of metallothionein. FEBS Lett. 1984 Mar 12;168(1):174–178. doi: 10.1016/0014-5793(84)80230-6. [DOI] [PubMed] [Google Scholar]
  32. Vasák M., Wörgötter E., Wagner G., Kägi J. H., Wüthrich K. Metal co-ordination in rat liver metallothionein-2 prepared with or without reconstitution of the metal clusters, and comparison with rabbit liver metallothionein-2. J Mol Biol. 1987 Aug 5;196(3):711–719. doi: 10.1016/0022-2836(87)90042-8. [DOI] [PubMed] [Google Scholar]
  33. Willner H., Vasák M., Kägi J. H. Cadmium-thiolate clusters in metallothionein: spectrophotometric and spectropolarimetric features. Biochemistry. 1987 Sep 22;26(19):6287–6292. doi: 10.1021/bi00393a049. [DOI] [PubMed] [Google Scholar]
  34. Xiong Y., Ru B. Purification and characteristics of recombinant mouse metallothionein-I from Escherichia coli. J Biochem. 1997 Jun;121(6):1102–1106. doi: 10.1093/oxfordjournals.jbchem.a021701. [DOI] [PubMed] [Google Scholar]
  35. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  36. Zangger K., Oz G., Otvos J. D., Armitage I. M. Three-dimensional solution structure of mouse [Cd7]-metallothionein-1 by homonuclear and heteronuclear NMR spectroscopy. Protein Sci. 1999 Dec;8(12):2630–2638. doi: 10.1110/ps.8.12.2630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zeng J., Vallee B. L., Kägi J. H. Zinc transfer from transcription factor IIIA fingers to thionein clusters. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):9984–9988. doi: 10.1073/pnas.88.22.9984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES