Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):309–313. doi: 10.1042/0264-6021:3540309

Preparation of anhydrothrombin and characterization of its interaction with natural thrombin substrates.

K Hosokawa 1, T Ohnishi 1, M Shima 1, M Nagata 1, T Koide 1
PMCID: PMC1221657  PMID: 11171108

Abstract

Thrombin is a serine proteinase that plays a key role in thrombosis and haemostasis through its interaction with several coagulation factors. Anhydrothrombin was prepared from PMSF-inactivated thrombin under alkaline conditions, and the folded anhydrothrombin was successfully recovered after dialysis in the presence of glycerol. Anhydro-derivatives of factor Xa, factor VIIa and activated protein C could also be prepared essentially by the same procedure. Anhydrothrombin retained affinity for various natural substrates of thrombin, including fibrinogen, factor VIII, factor XIII and protein C. In addition, these proteins were bound to anhydrothrombin-agarose in a reversible manner. The K(d) values for factor VIII, fibrinogen, factor XIII and protein C were 1.2x10(-8), 4.4x10(-8), 2.8x10(-7) and 8.1x10(-5) M, respectively. Thus thrombin substrates known to interact with the exosite I of thrombin demonstrated high affinity for anhydrothrombin. Furthermore, in the presence of Na+, substantial enhancement of the association rate constant (k(ass)) was observed for interactions of fibrinogen and factor VIII with anhydrothrombin. These results suggest that anhydrothrombin is useful in the purification of thrombin substrate proteins as well as in the investigation of detailed interactions between thrombin and these substrates in their activation or degradation processes.

Full Text

The Full Text of this article is available as a PDF (115.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ako H., Foster R. J., Ryan C. A. Mechanism of action of naturally occurring proteinase inhibitors. Studies with anhydrotrypsin and anhydrochymotrypsin purified by affinity chromatography. Biochemistry. 1974 Jan 1;13(1):132–139. doi: 10.1021/bi00698a021. [DOI] [PubMed] [Google Scholar]
  2. Ako H., Foster R. J., Ryan C. A. The preparation of anhydro-trypsin and its reactivity with naturally occurring proteinase inhibitors. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1402–1407. doi: 10.1016/0006-291x(72)90228-8. [DOI] [PubMed] [Google Scholar]
  3. Ako H., Ryan C. A., Foster R. J. The purification by affinity chromatography of a proteinase inhibitor binding species of anhydro-chymotrypsin. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1639–1645. doi: 10.1016/0006-291x(72)90797-8. [DOI] [PubMed] [Google Scholar]
  4. Andersen H., Greenberg D. L., Fujikawa K., Xu W., Chung D. W., Davie E. W. Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11189–11193. doi: 10.1073/pnas.96.20.11189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashton R. W., Scheraga H. A. Preparation and characterization of anhydrothrombin. Biochemistry. 1995 May 16;34(19):6454–6463. doi: 10.1021/bi00019a027. [DOI] [PubMed] [Google Scholar]
  6. Bauer R. S., Chang T. L., Berliner L. J. Stability differences between high coagulant (alpha) and noncoagulant (gamma) human thrombins. Denaturation. J Biol Chem. 1980 Jun 25;255(12):5900–5903. [PubMed] [Google Scholar]
  7. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colman R. W. The effect of proteolytic enzymes on bovine factor V. I. Kinetics of activation and inactivation by bovine thrombin. Biochemistry. 1969 Apr;8(4):1438–1445. doi: 10.1021/bi00832a019. [DOI] [PubMed] [Google Scholar]
  9. Dang O. D., Vindigni A., Di Cera E. An allosteric switch controls the procoagulant and anticoagulant activities of thrombin. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5977–5981. doi: 10.1073/pnas.92.13.5977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dharmawardana K. R., Olson S. T., Bock P. E. Role of regulatory exosite I in binding of thrombin to human factor V, factor Va, factor Va subunits, and activation fragments. J Biol Chem. 1999 Jun 25;274(26):18635–18643. doi: 10.1074/jbc.274.26.18635. [DOI] [PubMed] [Google Scholar]
  11. Di Cera E., Guinto E. R., Vindigni A., Dang Q. D., Ayala Y. M., Wuyi M., Tulinsky A. The Na+ binding site of thrombin. J Biol Chem. 1995 Sep 22;270(38):22089–22092. doi: 10.1074/jbc.270.38.22089. [DOI] [PubMed] [Google Scholar]
  12. Esmon N. L., Owen W. G., Esmon C. T. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem. 1982 Jan 25;257(2):859–864. [PubMed] [Google Scholar]
  13. Fass D. N., Knutson G. J., Katzmann J. A. Monoclonal antibodies to porcine factor VIII coagulant and their use in the isolation of active coagulant protein. Blood. 1982 Mar;59(3):594–600. [PubMed] [Google Scholar]
  14. Fenton J. W., 2nd, Fasco M. J., Stackrow A. B. Human thrombins. Production, evaluation, and properties of alpha-thrombin. J Biol Chem. 1977 Jun 10;252(11):3587–3598. [PubMed] [Google Scholar]
  15. George A. J., French R. R., Glennie M. J. Measurement of kinetic binding constants of a panel of anti-saporin antibodies using a resonant mirror biosensor. J Immunol Methods. 1995 Jun 14;183(1):51–63. doi: 10.1016/0022-1759(95)00031-5. [DOI] [PubMed] [Google Scholar]
  16. Hageman T. C., Endres G. F., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. On the role of the A chain of bovine thrombin in specificity and in differentiating between thrombin and trypsin. Arch Biochem Biophys. 1975 Nov;171(1):327–336. doi: 10.1016/0003-9861(75)90039-9. [DOI] [PubMed] [Google Scholar]
  17. Kahn M. L., Zheng Y. W., Huang W., Bigornia V., Zeng D., Moff S., Farese R. V., Jr, Tam C., Coughlin S. R. A dual thrombin receptor system for platelet activation. Nature. 1998 Aug 13;394(6694):690–694. doi: 10.1038/29325. [DOI] [PubMed] [Google Scholar]
  18. Koide T., Odani S., Ono T. Human histidine-rich glycoprotein: simultaneous purification with antithrombin III and characterization of its gross structure. J Biochem. 1985 Nov;98(5):1191–1200. doi: 10.1093/oxfordjournals.jbchem.a135385. [DOI] [PubMed] [Google Scholar]
  19. LORAND L., KONISHI K. ACTIVATION OF THE FIBRIN STABILIZING FACTOR OF PLASMA BY THROMBIN. Arch Biochem Biophys. 1964 Apr;105:58–67. doi: 10.1016/0003-9861(64)90235-8. [DOI] [PubMed] [Google Scholar]
  20. Myles T., Church F. C., Whinna H. C., Monard D., Stone S. R. Role of thrombin anion-binding exosite-I in the formation of thrombin-serpin complexes. J Biol Chem. 1998 Nov 20;273(47):31203–31208. doi: 10.1074/jbc.273.47.31203. [DOI] [PubMed] [Google Scholar]
  21. Nogami K., Shima M., Hosokawa K., Nagata M., Koide T., Saenko E. L., Tanaka I., Shibata M., Yoshioka A. Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Arg1689. J Biol Chem. 2000 Aug 18;275(33):25774–25780. doi: 10.1074/jbc.M002007200. [DOI] [PubMed] [Google Scholar]
  22. Nogami K., Shima M., Hosokawa K., Suzuki T., Koide T., Saenko E. L., Scandella D., Shibata M., Kamisue S., Tanaka I. Role of factor VIII C2 domain in factor VIII binding to factor Xa. J Biol Chem. 1999 Oct 22;274(43):31000–31007. doi: 10.1074/jbc.274.43.31000. [DOI] [PubMed] [Google Scholar]
  23. Orthner C. L., Kosow D. P. Evidence that human alpha-thrombin is a monovalent cation-activated enzyme. Arch Biochem Biophys. 1980 Jun;202(1):63–75. doi: 10.1016/0003-9861(80)90406-3. [DOI] [PubMed] [Google Scholar]
  24. Rydel T. J., Tulinsky A., Bode W., Huber R. Refined structure of the hirudin-thrombin complex. J Mol Biol. 1991 Sep 20;221(2):583–601. doi: 10.1016/0022-2836(91)80074-5. [DOI] [PubMed] [Google Scholar]
  25. Shima M., Nakai H., Scandella D., Tanaka I., Sawamoto Y., Kamisue S., Morichika S., Murakami T., Yoshioka A. Common inhibitory effects of human anti-C2 domain inhibitor alloantibodies on factor VIII binding to von Willebrand factor. Br J Haematol. 1995 Nov;91(3):714–721. doi: 10.1111/j.1365-2141.1995.tb05374.x. [DOI] [PubMed] [Google Scholar]
  26. Stubbs M. T., Bode W. The clot thickens: clues provided by thrombin structure. Trends Biochem Sci. 1995 Jan;20(1):23–28. doi: 10.1016/s0968-0004(00)88945-8. [DOI] [PubMed] [Google Scholar]
  27. Tomono T., Sawada E. Preparation of anhydro-thrombin and its interaction with plasma antithrombin III. Nihon Ketsueki Gakkai Zasshi. 1986 Jul;49(4):969–979. [PubMed] [Google Scholar]
  28. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  29. Wastell D. G., Acheson E. J., Cotter L., Schady W., Lucas S. B., Cronin E. Computing in clinical departments: implications for the design of hospital information systems. Health Policy. 1987;8(3):347–354. doi: 10.1016/0168-8510(87)90010-8. [DOI] [PubMed] [Google Scholar]
  30. Weiner H., White W. N., Hoare D. G., Koshland D. E., Jr The formation of anhydrochymotrypsin by removing the elements of water from the serine at the active site. J Am Chem Soc. 1966 Aug 20;88(16):3851–3859. doi: 10.1021/ja00968a033. [DOI] [PubMed] [Google Scholar]
  31. Wells C. M., Di Cera E. Thrombin is a Na(+)-activated enzyme. Biochemistry. 1992 Dec 1;31(47):11721–11730. doi: 10.1021/bi00162a008. [DOI] [PubMed] [Google Scholar]
  32. Yokosawa H., Ishii S. Anhydrotrypsin: new features in ligand interactions revealed by affinity chromatography and thionine replacement. J Biochem. 1977 Mar;81(3):647–656. doi: 10.1093/oxfordjournals.jbchem.a131500. [DOI] [PubMed] [Google Scholar]
  33. Yokosawa H., Ojima S., Ishii S. Thioltrypsin. Chemical transformation of the active-site serine residue of Streptomyces griseus trypsin to a cysteine residue. J Biochem. 1977 Sep;82(3):869–876. doi: 10.1093/oxfordjournals.jbchem.a131763. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES