Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):315–322. doi: 10.1042/0264-6021:3540315

Src homology 3 domain-dependent interaction of Nck-2 with insulin receptor substrate-1.

Y Tu 1, L Liang 1, S J Frank 1, C Wu 1
PMCID: PMC1221658  PMID: 11171109

Abstract

Insulin receptor substrate-1 (IRS-1) is a multi-domain protein that mediates signal transduction from receptors for insulin and other growth factors to a variety of downstream molecules through both tyrosine-phosphorylation-dependent and -independent interactions. While the tyrosine-phosphorylation-dependent interactions mediated by IRS-1 have been well characterized, the molecular basis underlying the tyrosine-phosphorylation-independent IRS-1 interactions is largely unknown. We previously detected, in an in vitro binding assay, interactions of Nck-2 Src homology (SH) 3 domains with IRS-1. We show here that IRS-1 associates with Nck-2 in vivo. Additionally, we have investigated the molecular basis underlying the IRS-1-Nck-2 complex formation. We have found that (i) mutations at the highly conserved tryptophan within the Nck-2 SH3 domains markedly reduced the association with IRS-1, (ii) interactions mediated by multiple SH3 domains enhance the complex formation of Nck-2 with IRS-1, (iii) deletion of either the phosphotyrosine-binding/Shc and IRS-1 NPXY-binding (PTB/SAIN) domains or the Pre-C-terminal domain of IRS-1, but not the pleckstrin homology (PH) domain, reduced the Nck-2 binding, (iv) PTB/SAIN domains or the Pre-C-terminal domain alone is capable of interacting with Nck-2, and (v) the IRS-1-Nck-2 interaction occurs in the absence of other proteins and therefore is direct. These results establish that IRS-1 is a bona fide target of the Nck-2 SH3 domains and reveal that IRS-1 forms a complex with Nck-2 via direct interactions mediated by multiple domains from both binding partners.

Full Text

The Full Text of this article is available as a PDF (222.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braverman L. E., Quilliam L. A. Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck. J Biol Chem. 1999 Feb 26;274(9):5542–5549. doi: 10.1074/jbc.274.9.5542. [DOI] [PubMed] [Google Scholar]
  2. Cengel K. A., Freund G. G. JAK1-dependent phosphorylation of insulin receptor substrate-1 (IRS-1) is inhibited by IRS-1 serine phosphorylation. J Biol Chem. 1999 Sep 24;274(39):27969–27974. doi: 10.1074/jbc.274.39.27969. [DOI] [PubMed] [Google Scholar]
  3. Chen M., She H., Davis E. M., Spicer C. M., Kim L., Ren R., Le Beau M. M., Li W. Identification of Nck family genes, chromosomal localization, expression, and signaling specificity. J Biol Chem. 1998 Sep 25;273(39):25171–25178. doi: 10.1074/jbc.273.39.25171. [DOI] [PubMed] [Google Scholar]
  4. Craparo A., Freund R., Gustafson T. A. 14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J Biol Chem. 1997 Apr 25;272(17):11663–11669. doi: 10.1074/jbc.272.17.11663. [DOI] [PubMed] [Google Scholar]
  5. De Fea K., Roth R. A. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry. 1997 Oct 21;36(42):12939–12947. doi: 10.1021/bi971157f. [DOI] [PubMed] [Google Scholar]
  6. Delcommenne M., Tan C., Gray V., Rue L., Woodgett J., Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11211–11216. doi: 10.1073/pnas.95.19.11211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eldar-Finkelman H., Krebs E. G. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9660–9664. doi: 10.1073/pnas.94.18.9660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fei Z. L., D'Ambrosio C., Li S., Surmacz E., Baserga R. Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol Cell Biol. 1995 Aug;15(8):4232–4239. doi: 10.1128/mcb.15.8.4232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Folli F., Saad M. J., Velloso L., Hansen H., Carandente O., Feener E. P., Kahn C. R. Crosstalk between insulin and angiotensin II signalling systems. Exp Clin Endocrinol Diabetes. 1999;107(2):133–139. doi: 10.1055/s-0029-1212088. [DOI] [PubMed] [Google Scholar]
  10. Gustafson T. A., He W., Craparo A., Schaub C. D., O'Neill T. J. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol. 1995 May;15(5):2500–2508. doi: 10.1128/mcb.15.5.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hannigan G. E., Leung-Hagesteijn C., Fitz-Gibbon L., Coppolino M. G., Radeva G., Filmus J., Bell J. C., Dedhar S. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature. 1996 Jan 4;379(6560):91–96. doi: 10.1038/379091a0. [DOI] [PubMed] [Google Scholar]
  12. Hotamisligil G. S., Peraldi P., Budavari A., Ellis R., White M. F., Spiegelman B. M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996 Feb 2;271(5249):665–668. doi: 10.1126/science.271.5249.665. [DOI] [PubMed] [Google Scholar]
  13. Kanety H., Feinstein R., Papa M. Z., Hemi R., Karasik A. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995 Oct 6;270(40):23780–23784. doi: 10.1074/jbc.270.40.23780. [DOI] [PubMed] [Google Scholar]
  14. Kim S. O., Jiang J., Yi W., Feng G. S., Frank S. J. Involvement of the Src homology 2-containing tyrosine phosphatase SHP-2 in growth hormone signaling. J Biol Chem. 1998 Jan 23;273(4):2344–2354. doi: 10.1074/jbc.273.4.2344. [DOI] [PubMed] [Google Scholar]
  15. Laakso M., Malkki M., Kekäläinen P., Kuusisto J., Deeb S. S. Insulin receptor substrate-1 variants in non-insulin-dependent diabetes. J Clin Invest. 1994 Sep;94(3):1141–1146. doi: 10.1172/JCI117429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li F., Zhang Y., Wu C. Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J Cell Sci. 1999 Dec;112(Pt 24):4589–4599. doi: 10.1242/jcs.112.24.4589. [DOI] [PubMed] [Google Scholar]
  17. Liang L., Zhou T., Jiang J., Pierce J. H., Gustafson T. A., Frank S. J. Insulin receptor substrate-1 enhances growth hormone-induced proliferation. Endocrinology. 1999 May;140(5):1972–1983. doi: 10.1210/endo.140.5.6724. [DOI] [PubMed] [Google Scholar]
  18. Myers M. G., Jr, Grammer T. C., Brooks J., Glasheen E. M., Wang L. M., Sun X. J., Blenis J., Pierce J. H., White M. F. The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signaling. J Biol Chem. 1995 May 19;270(20):11715–11718. doi: 10.1074/jbc.270.20.11715. [DOI] [PubMed] [Google Scholar]
  19. Myers M. G., Jr, Zhang Y., Aldaz G. A., Grammer T., Glasheen E. M., Yenush L., Wang L. M., Sun X. J., Blenis J., Pierce J. H. YMXM motifs and signaling by an insulin receptor substrate 1 molecule without tyrosine phosphorylation sites. Mol Cell Biol. 1996 Aug;16(8):4147–4155. doi: 10.1128/mcb.16.8.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ogawa W., Matozaki T., Kasuga M. Role of binding proteins to IRS-1 in insulin signalling. Mol Cell Biochem. 1998 May;182(1-2):13–22. [PubMed] [Google Scholar]
  21. Paz K., Liu Y. F., Shorer H., Hemi R., LeRoith D., Quan M., Kanety H., Seger R., Zick Y. Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem. 1999 Oct 1;274(40):28816–28822. doi: 10.1074/jbc.274.40.28816. [DOI] [PubMed] [Google Scholar]
  22. Peraldi P., Hotamisligil G. S., Buurman W. A., White M. F., Spiegelman B. M. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem. 1996 May 31;271(22):13018–13022. doi: 10.1074/jbc.271.22.13018. [DOI] [PubMed] [Google Scholar]
  23. Qiao L. Y., Goldberg J. L., Russell J. C., Sun X. J. Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem. 1999 Apr 9;274(15):10625–10632. doi: 10.1074/jbc.274.15.10625. [DOI] [PubMed] [Google Scholar]
  24. Rao Y., Zipursky S. L. Domain requirements for the Dock adapter protein in growth- cone signaling. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2077–2082. doi: 10.1073/pnas.95.5.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sun X. J., Rothenberg P., Kahn C. R., Backer J. M., Araki E., Wilden P. A., Cahill D. A., Goldstein B. J., White M. F. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991 Jul 4;352(6330):73–77. doi: 10.1038/352073a0. [DOI] [PubMed] [Google Scholar]
  26. Tanaka M., Gupta R., Mayer B. J. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol. 1995 Dec;15(12):6829–6837. doi: 10.1128/mcb.15.12.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tanaka M., Lu W., Gupta R., Mayer B. J. Expression of mutated Nck SH2/SH3 adaptor respecifies mesodermal cell fate in Xenopus laevis development. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4493–4498. doi: 10.1073/pnas.94.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanti J. F., Grémeaux T., van Obberghen E., Le Marchand-Brustel Y. Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem. 1994 Feb 25;269(8):6051–6057. [PubMed] [Google Scholar]
  29. Tu Y., Li F., Goicoechea S., Wu C. The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Mol Cell Biol. 1999 Mar;19(3):2425–2434. doi: 10.1128/mcb.19.3.2425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tu Y., Li F., Wu C. Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Mol Biol Cell. 1998 Dec;9(12):3367–3382. doi: 10.1091/mbc.9.12.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Voliovitch H., Schindler D. G., Hadari Y. R., Taylor S. I., Accili D., Zick Y. Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region. J Biol Chem. 1995 Jul 28;270(30):18083–18087. doi: 10.1074/jbc.270.30.18083. [DOI] [PubMed] [Google Scholar]
  32. White M. F. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem. 1998 May;182(1-2):3–11. [PubMed] [Google Scholar]
  33. Wolf G., Trüb T., Ottinger E., Groninga L., Lynch A., White M. F., Miyazaki M., Lee J., Shoelson S. E. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J Biol Chem. 1995 Nov 17;270(46):27407–27410. doi: 10.1074/jbc.270.46.27407. [DOI] [PubMed] [Google Scholar]
  34. Wu C. Integrin-linked kinase and PINCH: partners in regulation of cell-extracellular matrix interaction and signal transduction. J Cell Sci. 1999 Dec;112(Pt 24):4485–4489. doi: 10.1242/jcs.112.24.4485. [DOI] [PubMed] [Google Scholar]
  35. Yenush L., Makati K. J., Smith-Hall J., Ishibashi O., Myers M. G., Jr, White M. F. The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J Biol Chem. 1996 Sep 27;271(39):24300–24306. doi: 10.1074/jbc.271.39.24300. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES