Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):337–344. doi: 10.1042/0264-6021:3540337

Selective inactivation of guanine-nucleotide-binding regulatory protein (G-protein) alpha and betagamma subunits by urea.

W K Lim 1, R R Neubig 1
PMCID: PMC1221661  PMID: 11171112

Abstract

G-protein-coupled receptors activate signal-transducing G-proteins, which consist of an alpha subunit and a betagamma dimer. Membrane extraction with 5-7 M urea has been used to uncouple receptors from endogenous G-proteins to permit reconstitution with purified G-proteins. We show that alpha(i) subunits are inactivated with 5 M urea whereas the betagamma dimer requires at least 7 M urea for its inactivation. There is no significant loss of receptors. Surprisingly, Western-blot analysis indicates that the urea-denatured alpha(i) subunit remains mostly membrane-bound and that beta is only partially removed. After 7 M urea treatment, both alpha(i1) and betagamma subunits are required to restore high-affinity agonist binding and receptor-catalysed guanosine 5'-[gamma-thio]triphosphate binding. We demonstrate the generality of this approach for four G(i)-coupled receptors (alpha(2A)-adrenergic, adenosine A1, 5-hydroxytryptamine(1A) and mu-opioid) expressed in insect cells and two mammalian cell lines. Thus a selectivity of urea for G-protein alpha versus betagamma subunits is established in both concentration and mechanism.

Full Text

The Full Text of this article is available as a PDF (205.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Attanasio R., Stunz G. W., Kennedy R. C. Folding patterns of immunoglobulin molecules identified by urea gradient electrophoresis. J Biol Chem. 1994 Jan 21;269(3):1834–1838. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Butkerait P., Zheng Y., Hallak H., Graham T. E., Miller H. A., Burris K. D., Molinoff P. B., Manning D. R. Expression of the human 5-hydroxytryptamine1A receptor in Sf9 cells. Reconstitution of a coupled phenotype by co-expression of mammalian G protein subunits. J Biol Chem. 1995 Aug 4;270(31):18691–18699. doi: 10.1074/jbc.270.31.18691. [DOI] [PubMed] [Google Scholar]
  5. Caflisch A., Karplus M. Structural details of urea binding to barnase: a molecular dynamics analysis. Structure. 1999 May;7(5):477–488. doi: 10.1016/s0969-2126(99)80064-1. [DOI] [PubMed] [Google Scholar]
  6. Emmerson P. J., Clark M. J., Mansour A., Akil H., Woods J. H., Medzihradsky F. Characterization of opioid agonist efficacy in a C6 glioma cell line expressing the mu opioid receptor. J Pharmacol Exp Ther. 1996 Sep;278(3):1121–1127. [PubMed] [Google Scholar]
  7. Fawzi A. B., Northup J. K. Guanine nucleotide binding characteristics of transducin: essential role of rhodopsin for rapid exchange of guanine nucleotides. Biochemistry. 1990 Apr 17;29(15):3804–3812. doi: 10.1021/bi00467a030. [DOI] [PubMed] [Google Scholar]
  8. Figler R. A., Graber S. G., Lindorfer M. A., Yasuda H., Linden J., Garrison J. C. Reconstitution of recombinant bovine A1 adenosine receptors in Sf9 cell membranes with recombinant G proteins of defined composition. Mol Pharmacol. 1996 Dec;50(6):1587–1595. [PubMed] [Google Scholar]
  9. Ganpat M. M., Nishimura M., Toyoshige M., Okuya S., Pointer R. H., Rebois R. V. Evidence for stimulation of adenylyl cyclase by an activated G(s) heterotrimer in cell membranes: an experimental method for controlling the G(s) subunit composition of cell membranes. Cell Signal. 2000 Feb;12(2):113–122. doi: 10.1016/s0898-6568(99)00078-9. [DOI] [PubMed] [Google Scholar]
  10. Gerhardt M. A., Neubig R. R. Multiple Gi protein subtypes regulate a single effector mechanism. Mol Pharmacol. 1991 Nov;40(5):707–711. [PubMed] [Google Scholar]
  11. HABER E., ANFINSEN C. B. Side-chain interactions governing the pairing of half-cystine residues in ribonuclease. J Biol Chem. 1962 Jun;237:1839–1844. [PubMed] [Google Scholar]
  12. Hartman J. L., 4th, Northup J. K. Functional reconstitution in situ of 5-hydroxytryptamine2c (5HT2c) receptors with alphaq and inverse agonism of 5HT2c receptor antagonists. J Biol Chem. 1996 Sep 13;271(37):22591–22597. doi: 10.1074/jbc.271.37.22591. [DOI] [PubMed] [Google Scholar]
  13. Hellmich M. R., Battey J. F., Northup J. K. Selective reconstitution of gastrin-releasing peptide receptor with G alpha q. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):751–756. doi: 10.1073/pnas.94.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hepler J. R. Emerging roles for RGS proteins in cell signalling. Trends Pharmacol Sci. 1999 Sep;20(9):376–382. doi: 10.1016/s0165-6147(99)01369-3. [DOI] [PubMed] [Google Scholar]
  15. Huber A., Sander P., Gobert A., Bähner M., Hermann R., Paulsen R. The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J. 1996 Dec 16;15(24):7036–7045. [PMC free article] [PubMed] [Google Scholar]
  16. Ibarra-Molero B., Sanchez-Ruiz J. M. Are there equilibrium intermediate states in the urea-induced unfolding of hen egg-white lysozyme? Biochemistry. 1997 Aug 5;36(31):9616–9624. doi: 10.1021/bi9703305. [DOI] [PubMed] [Google Scholar]
  17. Jian X., Sainz E., Clark W. A., Jensen R. T., Battey J. F., Northup J. K. The bombesin receptor subtypes have distinct G protein specificities. J Biol Chem. 1999 Apr 23;274(17):11573–11581. doi: 10.1074/jbc.274.17.11573. [DOI] [PubMed] [Google Scholar]
  18. Kalkbrenner F., Dippel E., Wittig B., Schultz G. Specificity of interaction between receptor and G protein: use of antisense techniques to relate G-protein subunits to function. Biochim Biophys Acta. 1996 Nov 8;1314(1-2):125–139. doi: 10.1016/s0167-4889(96)00072-9. [DOI] [PubMed] [Google Scholar]
  19. Kim M. H., Neubig R. R. Membrane reconstitution of high-affinity alpha 2 adrenergic agonist binding with guanine nucleotide regulatory proteins. Biochemistry. 1987 Jun 16;26(12):3664–3672. doi: 10.1021/bi00386a061. [DOI] [PubMed] [Google Scholar]
  20. Kim M. H., Neubig R. R. Parallel inactivation of alpha 2-adrenergic agonist binding and Ni by alkaline treatment. FEBS Lett. 1985 Nov 18;192(2):321–325. doi: 10.1016/0014-5793(85)80134-4. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. McClue S. J., Milligan G. Molecular interaction of the human alpha 2-C10-adrenergic receptor, when expressed in Rat-1 fibroblasts, with multiple pertussis toxin-sensitive guanine nucleotide-binding proteins: studies with site-directed antisera. Mol Pharmacol. 1991 Nov;40(5):627–632. [PubMed] [Google Scholar]
  23. Milligan G., Carr C., Gould G. W., Mullaney I., Lavan B. E. Agonist-dependent, cholera toxin-catalyzed ADP-ribosylation of pertussis toxin-sensitive G-proteins following transfection of the human alpha 2-C10 adrenergic receptor into rat 1 fibroblasts. Evidence for the direct interaction of a single receptor with two pertussis toxin-sensitive G-proteins, Gi2 and Gi3. J Biol Chem. 1991 Apr 5;266(10):6447–6455. [PubMed] [Google Scholar]
  24. Mumby S. M., Linder M. E. Myristoylation of G-protein alpha subunits. Methods Enzymol. 1994;237:254–268. doi: 10.1016/s0076-6879(94)37067-2. [DOI] [PubMed] [Google Scholar]
  25. Neer E. J., Smith T. F. G protein heterodimers: new structures propel new questions. Cell. 1996 Jan 26;84(2):175–178. doi: 10.1016/s0092-8674(00)80969-1. [DOI] [PubMed] [Google Scholar]
  26. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  27. Offermanns S., Simon M. I. Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv. 1996;27:177–198. [PubMed] [Google Scholar]
  28. Patra S. K., Alonso A., Goñi F. M. Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces. Biochim Biophys Acta. 1998 Aug 14;1373(1):112–118. doi: 10.1016/s0005-2736(98)00095-9. [DOI] [PubMed] [Google Scholar]
  29. Pitcher J. A., Freedman N. J., Lefkowitz R. J. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692. doi: 10.1146/annurev.biochem.67.1.653. [DOI] [PubMed] [Google Scholar]
  30. Prakash V., Loucheux C., Scheufele S., Gorbunoff M. J., Timasheff S. N. Interactions of proteins with solvent components in 8 M urea. Arch Biochem Biophys. 1981 Sep;210(2):455–464. doi: 10.1016/0003-9861(81)90209-5. [DOI] [PubMed] [Google Scholar]
  31. Senogles S. E., Spiegel A. M., Padrell E., Iyengar R., Caron M. G. Specificity of receptor-G protein interactions. Discrimination of Gi subtypes by the D2 dopamine receptor in a reconstituted system. J Biol Chem. 1990 Mar 15;265(8):4507–4514. [PubMed] [Google Scholar]
  32. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  33. Sternweis P. C., Robishaw J. D. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem. 1984 Nov 25;259(22):13806–13813. [PubMed] [Google Scholar]
  34. Thissen J. A., Casey P. J. Microsomal membranes contain a high affinity binding site for prenylated peptides. J Biol Chem. 1993 Jul 5;268(19):13780–13783. [PubMed] [Google Scholar]
  35. Van Dop C., Yamanaka G., Steinberg F., Sekura R. D., Manclark C. R., Stryer L., Bourne H. R. ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J Biol Chem. 1984 Jan 10;259(1):23–26. [PubMed] [Google Scholar]
  36. Wade S. M., Lim W. K., Lan K. L., Chung D. A., Nanamori M., Neubig R. R. G(i) activator region of alpha(2A)-adrenergic receptors: distinct basic residues mediate G(i) versus G(s) activation. Mol Pharmacol. 1999 Nov;56(5):1005–1013. doi: 10.1124/mol.56.5.1005. [DOI] [PubMed] [Google Scholar]
  37. Walter A., Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90(3):207–217. doi: 10.1007/BF01870127. [DOI] [PubMed] [Google Scholar]
  38. Wange R. L., Smrcka A. V., Sternweis P. C., Exton J. H. Photoaffinity labeling of two rat liver plasma membrane proteins with [32P]gamma-azidoanilido GTP in response to vasopressin. Immunologic identification as alpha subunits of the Gq class of G proteins. J Biol Chem. 1991 Jun 25;266(18):11409–11412. [PubMed] [Google Scholar]
  39. Wedegaertner P. B., Wilson P. T., Bourne H. R. Lipid modifications of trimeric G proteins. J Biol Chem. 1995 Jan 13;270(2):503–506. doi: 10.1074/jbc.270.2.503. [DOI] [PubMed] [Google Scholar]
  40. Willardson B. M., Pou B., Yoshida T., Bitensky M. W. Cooperative binding of the retinal rod G-protein, transducin, to light-activated rhodopsin. J Biol Chem. 1993 Mar 25;268(9):6371–6382. [PubMed] [Google Scholar]
  41. Yoshida T., Willardson B. M., Wilkins J. F., Jensen G. J., Thornton B. D., Bitensky M. W. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J Biol Chem. 1994 Sep 30;269(39):24050–24057. [PubMed] [Google Scholar]
  42. Zou Q., Habermann-Rottinghaus S. M., Murphy K. P. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins. 1998 May 1;31(2):107–115. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES