Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):351–358. doi: 10.1042/0264-6021:3540351

Bi-directional effects of the elevation of intracellular calcium on the expression of inducible nitric oxide synthase in J774 macrophages exposed to low and to high concentrations of endotoxin.

R Korhonen 1, H Kankaanranta 1, A Lahti 1, M Lähde 1, R G Knowles 1, E Moilanen 1
PMCID: PMC1221663  PMID: 11171114

Abstract

Nitric oxide produced through the action of inducible nitric oxide synthase (iNOS) is an important mediator in immune responses of the host. Various extracellular factors, including inflammatory stimuli, affect intracellular free Ca2+ levels ([Ca2+](i)), modulating cellular signalling and gene expression. In the present study we investigated the effects of increased ([Ca2+](i)) on NO production through the iNOS pathway in J774 macrophages. Thapsigargin (TG), a Ca2+-ATPase inhibitor, and the Ca2+ ionophore A23187 were used as tools to induce an increase in ([Ca2+](i)) in the cytosol. This increase was confirmed by the fura 2 method. The production of NO was measured as accumulated nitrite in the cell culture medium; iNOS protein and iNOS mRNA were detected by Western blotting and reverse-transcriptase-mediated PCR respectively. The activation of nuclear factor kappaB (NF-kappaB) was investigated by electrophoretic mobility-shift assay. TG (100 nM) induced a marked synthesis of iNOS mRNA, iNOS protein and NO in cells primed with a low concentration of endotoxin [lipopolysaccharide (LPS) 1 ng/ml], which on its own induced barely detectable NO synthesis. Stimulation by a high concentration of LPS (100 ng/ml) induced a marked expression of iNOS and NO production. Under these conditions, treatment with TG hindered the synthesis of iNOS protein and NO production by accelerating the degradation of iNOS mRNA. Treatment with TG (100 nM) did not affect the NF-kappaB activity induced by low (1 ng/ml) or high (100 ng/ml) concentrations of LPS. Viability of the cells was confirmed by the 2,3-bis[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxyaniline ("XTT") method; apoptosis was ruled out by propidium iodide staining and flow cytometry. A23187 (1 microM) also transiently increased ([Ca2+](i)) and had opposite effects on NO production depending on the LPS concentration. Our results show that increased ([Ca2+](i)) induced the stimulation or suppression of NO production through iNOS in macrophages depending on the state of cell activation. These findings suggest that the receptor-mediated increase in ([Ca2+](i)) might be an important factor in the control of the balance between the up-regulation and down-regulation of inflammatory genes, including that encoding iNOS, depending on the phase of the inflammatory response.

Full Text

The Full Text of this article is available as a PDF (206.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bading H., Hardingham G. E., Johnson C. M., Chawla S. Gene regulation by nuclear and cytoplasmic calcium signals. Biochem Biophys Res Commun. 1997 Jul 30;236(3):541–543. doi: 10.1006/bbrc.1997.7037. [DOI] [PubMed] [Google Scholar]
  2. Beauparlant P., Hiscott J. Biological and biochemical inhibitors of the NF-kappa B/Rel proteins and cytokine synthesis. Cytokine Growth Factor Rev. 1996 Aug;7(2):175–190. doi: 10.1016/1359-6101(96)00020-2. [DOI] [PubMed] [Google Scholar]
  3. Bereta M., Bereta J., Georgoff I., Coffman F. D., Cohen S., Cohen M. C. Methylxanthines and calcium-mobilizing agents inhibit the expression of cytokine-inducible nitric oxide synthase and vascular cell adhesion molecule-1 in murine microvascular endothelial cells. Exp Cell Res. 1994 Jun;212(2):230–242. doi: 10.1006/excr.1994.1139. [DOI] [PubMed] [Google Scholar]
  4. Boughton-Smith N. K., Evans S. M., Laszlo F., Whittle B. J., Moncada S. The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat. Br J Pharmacol. 1993 Nov;110(3):1189–1195. doi: 10.1111/j.1476-5381.1993.tb13940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Chen B. C., Chou C. F., Lin W. W. Pyrimidinoceptor-mediated potentiation of inducible nitric-oxide synthase induction in J774 macrophages. Role of intracellular calcium. J Biol Chem. 1998 Nov 6;273(45):29754–29763. doi: 10.1074/jbc.273.45.29754. [DOI] [PubMed] [Google Scholar]
  7. Davis P. D., Hill C. H., Keech E., Lawton G., Nixon J. S., Sedgwick A. D., Wadsworth J., Westmacott D., Wilkinson S. E. Potent selective inhibitors of protein kinase C. FEBS Lett. 1989 Dec 18;259(1):61–63. doi: 10.1016/0014-5793(89)81494-2. [DOI] [PubMed] [Google Scholar]
  8. Denlinger L. C., Fisette P. L., Garis K. A., Kwon G., Vazquez-Torres A., Simon A. D., Nguyen B., Proctor R. A., Bertics P. J., Corbett J. A. Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J Biol Chem. 1996 Jan 5;271(1):337–342. doi: 10.1074/jbc.271.1.337. [DOI] [PubMed] [Google Scholar]
  9. Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
  10. Evans T., Carpenter A., Cohen J. Inducible nitric-oxide-synthase mRNA is transiently expressed and destroyed by a cycloheximide-sensitive process. Eur J Biochem. 1994 Jan 15;219(1-2):563–569. doi: 10.1111/j.1432-1033.1994.tb19972.x. [DOI] [PubMed] [Google Scholar]
  11. Geng Y., Lotz M. Increased intracellular Ca2+ selectively suppresses IL-1-induced NO production by reducing iNOS mRNA stability. J Cell Biol. 1995 Jun;129(6):1651–1657. doi: 10.1083/jcb.129.6.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Kankaanranta H., Moilanen E. Flufenamic and tolfenamic acids inhibit calcium influx in human polymorphonuclear leukocytes. Mol Pharmacol. 1995 May;47(5):1006–1013. [PubMed] [Google Scholar]
  15. Karupiah G., Xie Q. W., Buller R. M., Nathan C., Duarte C., MacMicking J. D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993 Sep 10;261(5127):1445–1448. doi: 10.1126/science.7690156. [DOI] [PubMed] [Google Scholar]
  16. Knowles R. G. Nitric oxide biochemistry. Biochem Soc Trans. 1997 Aug;25(3):895–901. doi: 10.1042/bst0250895. [DOI] [PubMed] [Google Scholar]
  17. Kooy N. W., Lewis S. J., Royall J. A., Ye Y. Z., Kelly D. R., Beckman J. S. Extensive tyrosine nitration in human myocardial inflammation: evidence for the presence of peroxynitrite. Crit Care Med. 1997 May;25(5):812–819. doi: 10.1097/00003246-199705000-00017. [DOI] [PubMed] [Google Scholar]
  18. Lyons C. R., Orloff G. J., Cunningham J. M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed] [Google Scholar]
  19. Malawista S. E., Montgomery R. R., van Blaricom G. Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasts. A new microbicidal pathway for polymorphonuclear leukocytes. J Clin Invest. 1992 Aug;90(2):631–636. doi: 10.1172/JCI115903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marks-Konczalik J., Chu S. C., Moss J. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J Biol Chem. 1998 Aug 28;273(35):22201–22208. doi: 10.1074/jbc.273.35.22201. [DOI] [PubMed] [Google Scholar]
  21. Mattila P. S., Ullman K. S., Fiering S., Emmel E. A., McCutcheon M., Crabtree G. R., Herzenberg L. A. The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. EMBO J. 1990 Dec;9(13):4425–4433. doi: 10.1002/j.1460-2075.1990.tb07893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moilanen E., Moilanen T., Knowles R., Charles I., Kadoya Y., al-Saffar N., Revell P. A., Moncada S. Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am J Pathol. 1997 Mar;150(3):881–887. [PMC free article] [PubMed] [Google Scholar]
  23. Moncada S., Higgs E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed] [Google Scholar]
  24. Murata T., Yamaguchi M. Ca2+ administration stimulates the binding of AP-1 factor to the 5'-flanking region of the rat gene for the Ca2+-binding protein regucalcin. Biochem J. 1998 Jan 1;329(Pt 1):157–163. doi: 10.1042/bj3290157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Myer V. E., Fan X. C., Steitz J. A. Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 1997 Apr 15;16(8):2130–2139. doi: 10.1093/emboj/16.8.2130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Park Y. C., Jun C. D., Kang H. S., Kim H. D., Kim H. M., Chung H. T. Role of intracellular calcium as a priming signal for the induction of nitric oxide synthesis in murine peritoneal macrophages. Immunology. 1996 Feb;87(2):296–302. doi: 10.1046/j.1365-2567.1996.456544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peppel K., Vinci J. M., Baglioni C. The AU-rich sequences in the 3' untranslated region mediate the increased turnover of interferon mRNA induced by glucocorticoids. J Exp Med. 1991 Feb 1;173(2):349–355. doi: 10.1084/jem.173.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Putney J. W., Jr, McKay R. R. Capacitative calcium entry channels. Bioessays. 1999 Jan;21(1):38–46. doi: 10.1002/(SICI)1521-1878(199901)21:1<38::AID-BIES5>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  29. Raddassi K., Berthon B., Petit J. F., Lemaire G. Role of calcium in the activation of mouse peritoneal macrophages: induction of NO synthase by calcium ionophores and thapsigargin. Cell Immunol. 1994 Feb;153(2):443–455. doi: 10.1006/cimm.1994.1041. [DOI] [PubMed] [Google Scholar]
  30. Rosen L. B., Ginty D. D., Greenberg M. E. Calcium regulation of gene expression. Adv Second Messenger Phosphoprotein Res. 1995;30:225–253. doi: 10.1016/s1040-7952(05)80009-6. [DOI] [PubMed] [Google Scholar]
  31. Sen C. K., Roy S., Packer L. Involvement of intracellular Ca2+ in oxidant-induced NF-kappa B activation. FEBS Lett. 1996 Apr 29;385(1-2):58–62. doi: 10.1016/0014-5793(96)00346-8. [DOI] [PubMed] [Google Scholar]
  32. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  33. Singer I. I., Kawka D. W., Scott S., Weidner J. R., Mumford R. A., Riehl T. E., Stenson W. F. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology. 1996 Oct;111(4):871–885. doi: 10.1016/s0016-5085(96)70055-0. [DOI] [PubMed] [Google Scholar]
  34. Su Q., Eugster H. P., Ryffel B., Dumont F. J. Cyclosporin A enhances the calcium-dependent induction of AP-1 complex and c-fos mRNA in a T cell lymphoma. Biochem Biophys Res Commun. 1996 Dec 4;229(1):249–256. doi: 10.1006/bbrc.1996.1788. [DOI] [PubMed] [Google Scholar]
  35. Szabó C., Ohshima H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. 1997 Oct;1(5):373–385. doi: 10.1006/niox.1997.0143. [DOI] [PubMed] [Google Scholar]
  36. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Uhlén P., Laestadius A., Jahnukainen T., Söderblom T., Bäckhed F., Celsi G., Brismar H., Normark S., Aperia A., Richter-Dahlfors A. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature. 2000 Jun 8;405(6787):694–697. doi: 10.1038/35015091. [DOI] [PubMed] [Google Scholar]
  38. Wong H., Anderson W. D., Cheng T., Riabowol K. T. Monitoring mRNA expression by polymerase chain reaction: the "primer-dropping" method. Anal Biochem. 1994 Dec;223(2):251–258. doi: 10.1006/abio.1994.1581. [DOI] [PubMed] [Google Scholar]
  39. Wray G. M., Millar C. G., Hinds C. J., Thiemermann C. Selective inhibition of the activity of inducible nitric oxide synthase prevents the circulatory failure, but not the organ injury/dysfunction, caused by endotoxin. Shock. 1998 May;9(5):329–335. doi: 10.1097/00024382-199805000-00003. [DOI] [PubMed] [Google Scholar]
  40. Xie Q. W., Kashiwabara Y., Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994 Feb 18;269(7):4705–4708. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES