Abstract
Numerous hormones, cytokines and transforming oncogenes activate phosphoinositide 3-kinase (PI-3K), a lipid kinase that initiates signal transduction cascades regulating cellular proliferation, survival, protein synthesis and glucose metabolism. PI-3K catalyses the production of the 3'-phosphoinositides PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3), which recruit downstream effector enzymes to the membrane via their pleckstrin homology (PH) domains. Recent studies have indicated that another signalling lipid, the sphingolipid ceramide, inhibits several PI-3K-dependent events, including insulin-stimulated glucose uptake and growth-factor-stimulated cell survival. Here we show that ceramide analogues specifically prevent the recruitment of the PtdIns(3,4,5)P(3)-binding proteins Akt/protein kinase B (PKB) or the general receptor for phosphoinositides-1 (GRP1). Specifically, the short-chain ceramide derivative C2-ceramide inhibited the platelet-derived growth factor (PDGF)-stimulated translocation of full-length Akt/PKB, as well as truncated proteins encoding only the PH domains of Akt/PKB or GRP1. C2-ceramide did not alter the membrane localization of the PH domain for phospholipase Cdelta, which preferentially binds PtdIns(4,5)P(2), nor did it affect the PDGF-stimulated production of PtdIns(3,4)P(2) or PtdIns(3,4,5)P(3). Interestingly, a glucosylceramide synthase inhibitor, 1-phenyl-2-decanoylamino-3-morpholinopropan-1-ol (PDMP), shown previously to increase intracellular ceramide concentrations without affecting PI-3K [Rani, Abe, Chang, Rosenzweig, Saltiel, Radin and Shayman (1995) J. Biol. Chem. 270, 2859-2867], recapitulated the inhibitory effects of C2-ceramide on PDGF-stimulated Akt/PKB phosphorylation. These studies indicate that ceramide prevents the translocation of certain PtdIns(3,4,5)P(3)-binding proteins, despite the presence of a full complement of PtdIns(3,4)P(2) or PtdIns(3,4,5)P(3). Furthermore, these findings suggest a mechanism by which stimuli that induce ceramide synthesis could negate the fundamental signalling pathways initiated by PI-3K.
Full Text
The Full Text of this article is available as a PDF (326.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Kozlowski M. T., Weng Q. P., Morrice N., Avruch J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol. 1998 Jan 15;8(2):69–81. doi: 10.1016/s0960-9822(98)70037-5. [DOI] [PubMed] [Google Scholar]
- Anderson K. E., Coadwell J., Stephens L. R., Hawkins P. T. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol. 1998 Jun 4;8(12):684–691. doi: 10.1016/s0960-9822(98)70274-x. [DOI] [PubMed] [Google Scholar]
- Astoul E., Watton S., Cantrell D. The dynamics of protein kinase B regulation during B cell antigen receptor engagement. J Cell Biol. 1999 Jun 28;145(7):1511–1520. doi: 10.1083/jcb.145.7.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajjalieh S., Batchelor R. Ceramide kinase. Methods Enzymol. 2000;311:207–215. doi: 10.1016/s0076-6879(00)11083-3. [DOI] [PubMed] [Google Scholar]
- Balendran A., Casamayor A., Deak M., Paterson A., Gaffney P., Currie R., Downes C. P., Alessi D. R. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol. 1999 Apr 22;9(8):393–404. doi: 10.1016/s0960-9822(99)80186-9. [DOI] [PubMed] [Google Scholar]
- Burow M. E., Weldon C. B., Collins-Burow B. M., Ramsey N., McKee A., Klippel A., McLachlan J. A., Clejan S., Beckman B. S. Cross-talk between phosphatidylinositol 3-kinase and sphingomyelinase pathways as a mechanism for cell survival/death decisions. J Biol Chem. 2000 Mar 31;275(13):9628–9635. doi: 10.1074/jbc.275.13.9628. [DOI] [PubMed] [Google Scholar]
- Datta S. R., Brunet A., Greenberg M. E. Cellular survival: a play in three Akts. Genes Dev. 1999 Nov 15;13(22):2905–2927. doi: 10.1101/gad.13.22.2905. [DOI] [PubMed] [Google Scholar]
- Dbaibo G. S., Pushkareva M. Y., Jayadev S., Schwarz J. K., Horowitz J. M., Obeid L. M., Hannun Y. A. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1347–1351. doi: 10.1073/pnas.92.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delcommenne M., Tan C., Gray V., Rue L., Woodgett J., Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11211–11216. doi: 10.1073/pnas.95.19.11211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downes C. P., Currie R. A. Lipid signalling. Curr Biol. 1998 Dec 3;8(24):R865–R867. doi: 10.1016/s0960-9822(07)00546-5. [DOI] [PubMed] [Google Scholar]
- Gomez-Muñoz A., Frago L. M., Alvarez L., Varela-Nieto I. Stimulation of DNA synthesis by natural ceramide 1-phosphate. Biochem J. 1997 Jul 15;325(Pt 2):435–440. doi: 10.1042/bj3250435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray A., Van Der Kaay J., Downes C. P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J. 1999 Dec 15;344(Pt 3):929–936. [PMC free article] [PubMed] [Google Scholar]
- Guilherme A., Klarlund J. K., Krystal G., Czech M. P. Regulation of phosphatidylinositol 3,4,5-trisphosphate 5'-phosphatase activity by insulin. J Biol Chem. 1996 Nov 22;271(47):29533–29536. doi: 10.1074/jbc.271.47.29533. [DOI] [PubMed] [Google Scholar]
- Hama H., Takemoto J. Y., DeWald D. B. Analysis of phosphoinositides in protein trafficking. Methods. 2000 Apr;20(4):465–473. doi: 10.1006/meth.2000.0959. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000 Feb;10(2):73–80. doi: 10.1016/s0962-8924(99)01694-3. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
- Hofmann K, Dixit VM. Reply to kolesnick and hannun, and perry and hannun . Trends Biochem Sci. 1999 Jun;24(6):227–227. doi: 10.1016/s0968-0004(99)01410-3. [DOI] [PubMed] [Google Scholar]
- Jarvis W. D., Grant S., Kolesnick R. N. Ceramide and the induction of apoptosis. Clin Cancer Res. 1996 Jan;2(1):1–6. [PubMed] [Google Scholar]
- Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
- Kanai F., Ito K., Todaka M., Hayashi H., Kamohara S., Ishii K., Okada T., Hazeki O., Ui M., Ebina Y. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem Biophys Res Commun. 1993 Sep 15;195(2):762–768. doi: 10.1006/bbrc.1993.2111. [DOI] [PubMed] [Google Scholar]
- Kapeller R., Cantley L. C. Phosphatidylinositol 3-kinase. Bioessays. 1994 Aug;16(8):565–576. doi: 10.1002/bies.950160810. [DOI] [PubMed] [Google Scholar]
- Kavran J. M., Klein D. E., Lee A., Falasca M., Isakoff S. J., Skolnik E. Y., Lemmon M. A. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem. 1998 Nov 13;273(46):30497–30508. doi: 10.1074/jbc.273.46.30497. [DOI] [PubMed] [Google Scholar]
- Kitamura T., Ogawa W., Sakaue H., Hino Y., Kuroda S., Takata M., Matsumoto M., Maeda T., Konishi H., Kikkawa U. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol. 1998 Jul;18(7):3708–3717. doi: 10.1128/mcb.18.7.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klarlund J. K., Rameh L. E., Cantley L. C., Buxton J. M., Holik J. J., Sakelis C., Patki V., Corvera S., Czech M. P. Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 Jan 23;273(4):1859–1862. doi: 10.1074/jbc.273.4.1859. [DOI] [PubMed] [Google Scholar]
- Langille S. E., Patki V., Klarlund J. K., Buxton J. M., Holik J. J., Chawla A., Corvera S., Czech M. P. ADP-ribosylation factor 6 as a target of guanine nucleotide exchange factor GRP1. J Biol Chem. 1999 Sep 17;274(38):27099–27104. doi: 10.1074/jbc.274.38.27099. [DOI] [PubMed] [Google Scholar]
- Liu Y. Y., Han T. Y., Giuliano A. E., Cabot M. C. Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem. 1999 Jan 8;274(2):1140–1146. doi: 10.1074/jbc.274.2.1140. [DOI] [PubMed] [Google Scholar]
- Maehama T., Dixon J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 29;273(22):13375–13378. doi: 10.1074/jbc.273.22.13375. [DOI] [PubMed] [Google Scholar]
- Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oatey P. B., Venkateswarlu K., Williams A. G., Fletcher L. M., Foulstone E. J., Cullen P. J., Tavaré J. M. Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. Biochem J. 1999 Dec 1;344(Pt 2):511–518. [PMC free article] [PubMed] [Google Scholar]
- Perry D. K., Hannun Y. A. The use of diglyceride kinase for quantifying ceramide. Trends Biochem Sci. 1999 Jun;24(6):226–227. doi: 10.1016/s0968-0004(99)01407-3. [DOI] [PubMed] [Google Scholar]
- Pullen N., Dennis P. B., Andjelkovic M., Dufner A., Kozma S. C., Hemmings B. A., Thomas G. Phosphorylation and activation of p70s6k by PDK1. Science. 1998 Jan 30;279(5351):707–710. doi: 10.1126/science.279.5351.707. [DOI] [PubMed] [Google Scholar]
- Rani C. S., Abe A., Chang Y., Rosenzweig N., Saltiel A. R., Radin N. S., Shayman J. A. Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases. J Biol Chem. 1995 Feb 10;270(6):2859–2867. doi: 10.1074/jbc.270.6.2859. [DOI] [PubMed] [Google Scholar]
- Salinas M., López-Valdaliso R., Martín D., Alvarez A., Cuadrado A. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci. 2000 Feb;15(2):156–169. doi: 10.1006/mcne.1999.0813. [DOI] [PubMed] [Google Scholar]
- Santana P., Peña L. A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M., Cordon-Cardo C., Schuchman E. H., Fuks Z., Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996 Jul 26;86(2):189–199. doi: 10.1016/s0092-8674(00)80091-4. [DOI] [PubMed] [Google Scholar]
- Schmitz-Peiffer C., Craig D. L., Biden T. J. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem. 1999 Aug 20;274(34):24202–24210. doi: 10.1074/jbc.274.34.24202. [DOI] [PubMed] [Google Scholar]
- Schubert K. M., Scheid M. P., Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem. 2000 May 5;275(18):13330–13335. doi: 10.1074/jbc.275.18.13330. [DOI] [PubMed] [Google Scholar]
- Shimabukuro M., Zhou Y. T., Levi M., Unger R. H. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2498–2502. doi: 10.1073/pnas.95.5.2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers S. A., Garza L. A., Zhou H., Birnbaum M. J. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol. 1998 Sep;18(9):5457–5464. doi: 10.1128/mcb.18.9.5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers S. A., Kao A. W., Kohn A. D., Backus G. S., Roth R. A., Pessin J. E., Birnbaum M. J. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem. 1999 Jun 18;274(25):17934–17940. doi: 10.1074/jbc.274.25.17934. [DOI] [PubMed] [Google Scholar]
- Summers S. A., Lipfert L., Birnbaum M. J. Polyoma middle T antigen activates the Ser/Thr kinase Akt in a PI3-kinase-dependent manner. Biochem Biophys Res Commun. 1998 May 8;246(1):76–81. doi: 10.1006/bbrc.1998.8575. [DOI] [PubMed] [Google Scholar]
- Summers S. A., Whiteman E. L., Cho H., Lipfert L., Birnbaum M. J. Differentiation-dependent suppression of platelet-derived growth factor signaling in cultured adipocytes. J Biol Chem. 1999 Aug 20;274(34):23858–23867. doi: 10.1074/jbc.274.34.23858. [DOI] [PubMed] [Google Scholar]
- Summers S. A., Yin V. P., Whiteman E. L., Garza L. A., Cho H., Tuttle R. L., Birnbaum M. J. Signaling pathways mediating insulin-stimulated glucose transport. Ann N Y Acad Sci. 1999 Nov 18;892:169–186. doi: 10.1111/j.1749-6632.1999.tb07795.x. [DOI] [PubMed] [Google Scholar]
- Toker A., Newton A. C. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem. 2000 Mar 24;275(12):8271–8274. doi: 10.1074/jbc.275.12.8271. [DOI] [PubMed] [Google Scholar]
- Venkateswarlu K., Gunn-Moore F., Oatey P. B., Tavaré J. M., Cullen P. J. Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem J. 1998 Oct 1;335(Pt 1):139–146. doi: 10.1042/bj3350139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlietstra R. J., van Alewijk D. C., Hermans K. G., van Steenbrugge G. J., Trapman J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 1998 Jul 1;58(13):2720–2723. [PubMed] [Google Scholar]
- Várnai P., Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol. 1998 Oct 19;143(2):501–510. doi: 10.1083/jcb.143.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C. N., O'Brien L., Brindley D. N. Effects of cell-permeable ceramides and tumor necrosis factor-alpha on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes. 1998 Jan;47(1):24–31. doi: 10.2337/diab.47.1.24. [DOI] [PubMed] [Google Scholar]
- Watton S. J., Downward J. Akt/PKB localisation and 3' phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr Biol. 1999 Apr 22;9(8):433–436. doi: 10.1016/s0960-9822(99)80192-4. [DOI] [PubMed] [Google Scholar]
- Yao R., Cooper G. M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995 Mar 31;267(5206):2003–2006. doi: 10.1126/science.7701324. [DOI] [PubMed] [Google Scholar]
- Zhou H., Summers S. A., Birnbaum M. J., Pittman R. N. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem. 1998 Jun 26;273(26):16568–16575. doi: 10.1074/jbc.273.26.16568. [DOI] [PubMed] [Google Scholar]
- Zundel W., Giaccia A. Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev. 1998 Jul 1;12(13):1941–1946. doi: 10.1101/gad.12.13.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zundel W., Swiersz L. M., Giaccia A. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol Cell Biol. 2000 Mar;20(5):1507–1514. doi: 10.1128/mcb.20.5.1507-1514.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]