Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):379–385. doi: 10.1042/0264-6021:3540379

Characterization of a cDNA encoding a novel avian hypothalamic neuropeptide exerting an inhibitory effect on gonadotropin release.

H Satake 1, M Hisada 1, T Kawada 1, H Minakata 1, K Ukena 1, K Tsutsui 1
PMCID: PMC1221666  PMID: 11171117

Abstract

We previously isolated a novel dodecapeptide containing a C-terminal -Arg-Phe-NH(2) sequence, SIKPSAYLPLRF-NH(2) (RFamide peptide), from the quail brain. This quail RFamide peptide was shown to decrease gonadotropin release from the cultured anterior pituitary and to be located at least in the quail hypothalamo-hypophysial system. We therefore designated this RFamide peptide gonadotropin inhibitory hormone (GnIH). In the present study we characterized the GnIH cDNA from the quail brain by a combination of 3' and 5' rapid amplification of cDNA ends ('RACE'). The deduced GnIH precursor consisted of 173 amino acid residues, encoding one GnIH and two putative gene-related peptide (GnIH-RP-1 and GnIH-RP-2) sequences that included -LPXRF (X=L or Q) at their C-termini. All these peptide sequences were flanked by a glycine C-terminal amidation signal and a single basic amino acid on each end as an endoproteolytic site. Southern blotting analysis of reverse-transcriptase-mediated PCR products demonstrated a specific expression of the gene encoding GnIH in the diencephalon including the hypothalamus. Furthermore, mass spectrometric analyses detected the mass numbers for matured GnIH and GnIH-RP-2, revealing that both peptides are produced from the precursor in the diencephalon as an endogenous ligand. Taken together, these results lead to the conclusion that GnIH is a hypothalamic factor responsible for the negative regulation of gonadotropin secretion. Furthermore, the presence of a novel RFamide peptide family containing a C-terminal -LPXRF-NH(2) sequence has been revealed.

Full Text

The Full Text of this article is available as a PDF (155.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman J. P., Mason A. J., Hayflick J. S., Seeburg P. H. Isolation of the gene and hypothalamic cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat. Proc Natl Acad Sci U S A. 1986 Jan;83(1):179–183. doi: 10.1073/pnas.83.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blomquist J. F., Baenziger J. U. Differential sorting of lutropin and the free alpha-subunit in cultured bovine pituitary cells. J Biol Chem. 1992 Oct 15;267(29):20798–20803. [PubMed] [Google Scholar]
  3. Burgus R., Butcher M., Amoss M., Ling N., Monahan M., Rivier J., Fellows R., Blackwell R., Vale W., Guillemin R. Primary structure of the ovine hypothalamic luteinizing hormone-releasing factor (LRF) (LH-hypothalamus-LRF-gas chromatography-mass spectrometry-decapeptide-Edman degradation). Proc Natl Acad Sci U S A. 1972 Jan;69(1):278–282. doi: 10.1073/pnas.69.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danoff A., Cutler D. F., Shields D. Heterologous expression of preprosomatostatin. Intracellular degradation of prosomatostatin-II. J Biol Chem. 1991 May 25;266(15):10004–10010. [PubMed] [Google Scholar]
  5. Day R., Lazure C., Basak A., Boudreault A., Limperis P., Dong W., Lindberg I. Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J Biol Chem. 1998 Jan 9;273(2):829–836. doi: 10.1074/jbc.273.2.829. [DOI] [PubMed] [Google Scholar]
  6. Fernald R. D., White R. B. Gonadotropin-releasing hormone genes: phylogeny, structure, and functions. Front Neuroendocrinol. 1999 Jul;20(3):224–240. doi: 10.1006/frne.1999.0181. [DOI] [PubMed] [Google Scholar]
  7. Fisher J. M., Sossin W., Newcomb R., Scheller R. H. Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell. 1988 Sep 9;54(6):813–822. doi: 10.1016/s0092-8674(88)91131-2. [DOI] [PubMed] [Google Scholar]
  8. Fujimoto M., Takeshita K., Wang X., Takabatake I., Fujisawa Y., Teranishi H., Ohtani M., Muneoka Y., Ohta S. Isolation and characterization of a novel bioactive peptide, Carassius RFamide (C-RFa), from the brain of the Japanese crucian carp. Biochem Biophys Res Commun. 1998 Jan 14;242(2):436–440. doi: 10.1006/bbrc.1997.7973. [DOI] [PubMed] [Google Scholar]
  9. Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S., Kitada C., Masuo Y., Asano T., Matsumoto H. A prolactin-releasing peptide in the brain. Nature. 1998 May 21;393(6682):272–276. doi: 10.1038/30515. [DOI] [PubMed] [Google Scholar]
  10. Hosaka M., Nagahama M., Kim W. S., Watanabe T., Hatsuzawa K., Ikemizu J., Murakami K., Nakayama K. Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem. 1991 Jul 5;266(19):12127–12130. [PubMed] [Google Scholar]
  11. Kakar S. S., Jennes L. Expression of gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor mRNAs in various non-reproductive human tissues. Cancer Lett. 1995 Nov 27;98(1):57–62. [PubMed] [Google Scholar]
  12. King J. A., Millar R. P. Structure of chicken hypothalamic luteinizing hormone-releasing hormone. I. Structural determination on partially purified material. J Biol Chem. 1982 Sep 25;257(18):10722–10728. [PubMed] [Google Scholar]
  13. Klumperman J., Spijker S., van Minnen J., Sharp-Baker H., Smit A. B., Geraerts W. P. Cell type-specific sorting of neuropeptides: a mechanism to modulate peptide composition of large dense-core vesicles. J Neurosci. 1996 Dec 15;16(24):7930–7940. doi: 10.1523/JNEUROSCI.16-24-07930.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kost T. A., Theodorakis N., Hughes S. H. The nucleotide sequence of the chick cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Dec 10;11(23):8287–8301. doi: 10.1093/nar/11.23.8287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsuo H., Baba Y., Nair R. M., Arimura A., Schally A. V. Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem Biophys Res Commun. 1971 Jun 18;43(6):1334–1339. doi: 10.1016/s0006-291x(71)80019-0. [DOI] [PubMed] [Google Scholar]
  17. Miyamoto K., Hasegawa Y., Nomura M., Igarashi M., Kangawa K., Matsuo H. Identification of the second gonadotropin-releasing hormone in chicken hypothalamus: evidence that gonadotropin secretion is probably controlled by two distinct gonadotropin-releasing hormones in avian species. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3874–3878. doi: 10.1073/pnas.81.12.3874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nillni E. A. Neuroregulation of ProTRH biosynthesis and processing. Endocrine. 1999 Jun;10(3):185–199. doi: 10.1007/BF02738618. [DOI] [PubMed] [Google Scholar]
  20. Perone M. J., Murray C. A., Brown O. A., Gibson S., White A., Linton E. A., Perkins A. V., Lowenstein P. R., Castro M. G. Procorticotrophin-releasing hormone: endoproteolytic processing and differential release of its derived peptides within AtT20 cells. Mol Cell Endocrinol. 1998 Jul 25;142(1-2):191–202. doi: 10.1016/s0303-7207(98)00104-x. [DOI] [PubMed] [Google Scholar]
  21. Price D. A., Greenberg M. J. Structure of a molluscan cardioexcitatory neuropeptide. Science. 1977 Aug 12;197(4304):670–671. doi: 10.1126/science.877582. [DOI] [PubMed] [Google Scholar]
  22. Reinhart J., Mertz L. M., Catt K. J. Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor. J Biol Chem. 1992 Oct 25;267(30):21281–21284. [PubMed] [Google Scholar]
  23. Satake H., Minakata H., Wang X., Fujimoto M. Characterization of a cDNA encoding a precursor of Carassius RFamide, structurally related to a mammalian prolactin-releasing peptide. FEBS Lett. 1999 Mar 12;446(2-3):247–250. doi: 10.1016/s0014-5793(99)00215-x. [DOI] [PubMed] [Google Scholar]
  24. Seeburg P. H., Adelman J. P. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature. 1984 Oct 18;311(5987):666–668. doi: 10.1038/311666a0. [DOI] [PubMed] [Google Scholar]
  25. Seidah N. G., Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999 Nov 27;848(1-2):45–62. doi: 10.1016/s0006-8993(99)01909-5. [DOI] [PubMed] [Google Scholar]
  26. Sherwood N. M., Sower S. A., Marshak D. R., Fraser B. A., Brownstein M. J. Primary structure of gonadotropin-releasing hormone from lamprey brain. J Biol Chem. 1986 Apr 15;261(11):4812–4819. [PubMed] [Google Scholar]
  27. Sherwood N., Eiden L., Brownstein M., Spiess J., Rivier J., Vale W. Characterization of a teleost gonadotropin-releasing hormone. Proc Natl Acad Sci U S A. 1983 May;80(9):2794–2798. doi: 10.1073/pnas.80.9.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsutsui K., Saigoh E., Ukena K., Teranishi H., Fujisawa Y., Kikuchi M., Ishii S., Sharp P. J. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun. 2000 Aug 28;275(2):661–667. doi: 10.1006/bbrc.2000.3350. [DOI] [PubMed] [Google Scholar]
  29. Vaitukaitis J. L., Ross G. T., Braunstein G. D., Rayford P. L. Gonadotropins and their subunits: basic and clinical studies. Recent Prog Horm Res. 1976;32:289–331. doi: 10.1016/b978-0-12-571132-6.50019-1. [DOI] [PubMed] [Google Scholar]
  30. Von Schalburg K. R., Sherwood N. M. Regulation and expression of gonadotropin-releasing hormone gene differs in brain and gonads in rainbow trout. Endocrinology. 1999 Jul;140(7):3012–3024. doi: 10.1210/endo.140.7.6795. [DOI] [PubMed] [Google Scholar]
  31. White S. A., Bond C. T., Francis R. C., Kasten T. L., Fernald R. D., Adelman J. P. A second gene for gonadotropin-releasing hormone: cDNA and expression pattern in the brain. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1423–1427. doi: 10.1073/pnas.91.4.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wuttke W. Neuroendocrine mechanisms in reproductive physiology. Rev Physiol Biochem Pharmacol. 1976;76:59–101. doi: 10.1007/BFb0027687. [DOI] [PubMed] [Google Scholar]
  33. Yang H. Y., Fratta W., Majane E. A., Costa E. Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7757–7761. doi: 10.1073/pnas.82.22.7757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES