Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 1;354(Pt 2):413–422. doi: 10.1042/0264-6021:3540413

Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor.

G Bultynck 1, P De Smet 1, D Rossi 1, G Callewaert 1, L Missiaen 1, V Sorrentino 1, H De Smedt 1, J B Parys 1
PMCID: PMC1221670  PMID: 11171121

Abstract

We investigated the interaction of the 12 kDa FK506-binding protein (FKBP12) with two ryanodine-receptor isoforms (RyR1 and RyR3) and with two myo-inositol 1,4,5-trisphosphate (IP3) receptor isoforms (IP3R1 and IP3R3). Using glutathione S-transferase (GST)-FKBP12 affinity chromatography, we could efficiently extract RyR1 (42+/-7% of the solubilized RyR1) from terminal cisternae of skeletal muscle as well as RyR3 (32+/-4% of the solubilized RyR3) from RyR3-overexpressing HEK-293 cells. These interactions were completely abolished by FK506 (20 microM) but were largely unaffected by RyR-channel modulators. In contrast, neither IP3R1 nor IP3R3 from various sources, including rabbit cerebellum, A7r5 smooth-muscle cells and IP3R-overexpressing Sf9 insect cells from Spodoptera frugiperda, were retained on the GST-FKBP12 matrix. Moreover, immunoprecipitation experiments indicated a high-affinity interaction of FKBP12 with RyR1 but not with IP3R1. In order to determine the FKBP12-binding site, we fragmented both RyR1 and IP33R1 by limited proteolysis. We obtained a 45 kDa fragment of RyR1 that bound to the GST-FKBP12 matrix, indicating that it retained all requirements for FKBP12 binding. This fragment was identified by its interaction with antibody m34C and must therefore contain its epitope (amino acids 2756-2803). However, no fragment of IP3R1 was retained on the column. These molecular data are in agreement with the lack of correlation between FKBP12 and IP3R1 expression in various cell types. The observation that FKBP12 did not affect IP3-induced Ca2+ release but reduced caffeine-induced Ca2+ release also indicated that mature IP3R1 and IP3R3, in contrast to RyR1 and RyR3, did not display a specific, high-affinity interaction with FKBP12.

Full Text

The Full Text of this article is available as a PDF (278.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airey J. A., Beck C. F., Murakami K., Tanksley S. J., Deerinck T. J., Ellisman M. H., Sutko J. L. Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J Biol Chem. 1990 Aug 25;265(24):14187–14194. [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Boehning D., Joseph S. K. Functional properties of recombinant type I and type III inositol 1, 4,5-trisphosphate receptor isoforms expressed in COS-7 cells. J Biol Chem. 2000 Jul 14;275(28):21492–21499. doi: 10.1074/jbc.M001724200. [DOI] [PubMed] [Google Scholar]
  4. Brillantes A. B., Ondrias K., Scott A., Kobrinsky E., Ondriasová E., Moschella M. C., Jayaraman T., Landers M., Ehrlich B. E., Marks A. R. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell. 1994 May 20;77(4):513–523. doi: 10.1016/0092-8674(94)90214-3. [DOI] [PubMed] [Google Scholar]
  5. Bultynck G., De Smet P., Weidema A. F., Ver Heyen M., Maes K., Callewaert G., Missiaen L., Parys J. B., De Smedt H. Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms. J Physiol. 2000 Jun 15;525(Pt 3):681–693. doi: 10.1111/j.1469-7793.2000.t01-1-00681.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Callaway C., Seryshev A., Wang J. P., Slavik K. J., Needleman D. H., Cantu C., 3rd, Wu Y., Jayaraman T., Marks A. R., Hamilton S. L. Localization of the high and low affinity [3H]ryanodine binding sites on the skeletal muscle Ca2+ release channel. J Biol Chem. 1994 Jun 3;269(22):15876–15884. [PubMed] [Google Scholar]
  7. Cameron A. M., Nucifora F. C., Jr, Fung E. T., Livingston D. J., Aldape R. A., Ross C. A., Snyder S. H. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400-1401) and anchors calcineurin to this FK506-like domain. J Biol Chem. 1997 Oct 31;272(44):27582–27588. doi: 10.1074/jbc.272.44.27582. [DOI] [PubMed] [Google Scholar]
  8. Cameron A. M., Steiner J. P., Roskams A. J., Ali S. M., Ronnett G. V., Snyder S. H. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell. 1995 Nov 3;83(3):463–472. doi: 10.1016/0092-8674(95)90124-8. [DOI] [PubMed] [Google Scholar]
  9. Cameron A. M., Steiner J. P., Sabatini D. M., Kaplin A. I., Walensky L. D., Snyder S. H. Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1784–1788. doi: 10.1073/pnas.92.5.1784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Campbell K. P., Knudson C. M., Imagawa T., Leung A. T., Sutko J. L., Kahl S. D., Raab C. R., Madson L. Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem. 1987 May 15;262(14):6460–6463. [PubMed] [Google Scholar]
  11. Chen S. R., Airey J. A., MacLennan D. H. Positioning of major tryptic fragments in the Ca2+ release channel (ryanodine receptor) resulting from partial digestion of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Oct 25;268(30):22642–22649. [PubMed] [Google Scholar]
  12. De Smedt H., Missiaen L., Parys J. B., Bootman M. D., Mertens L., Van Den Bosch L., Casteels R. Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem. 1994 Aug 26;269(34):21691–21698. [PubMed] [Google Scholar]
  13. De Smedt H., Missiaen L., Parys J. B., Henning R. H., Sienaert I., Vanlingen S., Gijsens A., Himpens B., Casteels R. Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. Biochem J. 1997 Mar 1;322(Pt 2):575–583. doi: 10.1042/bj3220575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. De Waard M., Witcher D. R., Pragnell M., Liu H., Campbell K. P. Properties of the alpha 1-beta anchoring site in voltage-dependent Ca2+ channels. J Biol Chem. 1995 May 19;270(20):12056–12064. doi: 10.1074/jbc.270.20.12056. [DOI] [PubMed] [Google Scholar]
  15. Fischer G., Tradler T., Zarnt T. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett. 1998 Apr 10;426(1):17–20. doi: 10.1016/s0014-5793(98)00242-7. [DOI] [PubMed] [Google Scholar]
  16. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
  17. Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kanoh S., Kondo M., Tamaoki J., Shirakawa H., Aoshiba K., Miyazaki S., Kobayashi H., Nagata N., Nagai A. Effect of FK506 on ATP-induced intracellular calcium oscillations in cow tracheal epithelium. Am J Physiol. 1999 Jun;276(6 Pt 1):L891–L899. doi: 10.1152/ajplung.1999.276.6.L891. [DOI] [PubMed] [Google Scholar]
  19. Kay J. E. Structure-function relationships in the FK506-binding protein (FKBP) family of peptidylprolyl cis-trans isomerases. Biochem J. 1996 Mar 1;314(Pt 2):361–385. [PMC free article] [PubMed] [Google Scholar]
  20. MacKrill J. J. Protein-protein interactions in intracellular Ca2+-release channel function. Biochem J. 1999 Feb 1;337(Pt 3):345–361. [PMC free article] [PubMed] [Google Scholar]
  21. Maeda N., Niinobe M., Nakahira K., Mikoshiba K. Purification and characterization of P400 protein, a glycoprotein characteristic of Purkinje cell, from mouse cerebellum. J Neurochem. 1988 Dec;51(6):1724–1730. doi: 10.1111/j.1471-4159.1988.tb01151.x. [DOI] [PubMed] [Google Scholar]
  22. Maes K., Missiaen L., De Smet P., Vanlingen S., Callewaert G., Parys J. B., De Smedt H. Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium. 2000 May;27(5):257–267. doi: 10.1054/ceca.2000.0121. [DOI] [PubMed] [Google Scholar]
  23. Manunta M., Rossi D., Simeoni I., Butelli E., Romanin C., Sorrentino V., Schindler H. ATP-induced activation of expressed RyR3 at low free calcium. FEBS Lett. 2000 Apr 14;471(2-3):256–260. doi: 10.1016/s0014-5793(00)01385-5. [DOI] [PubMed] [Google Scholar]
  24. Marks A. R. Cardiac intracellular calcium release channels: role in heart failure. Circ Res. 2000 Jul 7;87(1):8–11. doi: 10.1161/01.res.87.1.8. [DOI] [PubMed] [Google Scholar]
  25. Marx S. O., Ondrias K., Marks A. R. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors) Science. 1998 Aug 7;281(5378):818–821. doi: 10.1126/science.281.5378.818. [DOI] [PubMed] [Google Scholar]
  26. Marx S. O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., Marks A. R. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000 May 12;101(4):365–376. doi: 10.1016/s0092-8674(00)80847-8. [DOI] [PubMed] [Google Scholar]
  27. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  28. Missiaen L., De Smedt H., Droogmans G., Casteels R. Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in permeabilized cells. Nature. 1992 Jun 18;357(6379):599–602. doi: 10.1038/357599a0. [DOI] [PubMed] [Google Scholar]
  29. Murayama T., Oba T., Katayama E., Oyamada H., Oguchi K., Kobayashi M., Otsuka K., Ogawa Y. Further characterization of the type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm. J Biol Chem. 1999 Jun 11;274(24):17297–17308. doi: 10.1074/jbc.274.24.17297. [DOI] [PubMed] [Google Scholar]
  30. Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
  31. Parys J. B., de Smedt H., Missiaen L., Bootman M. D., Sienaert I., Casteels R. Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium. 1995 Apr;17(4):239–249. doi: 10.1016/0143-4160(95)90070-5. [DOI] [PubMed] [Google Scholar]
  32. Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
  33. Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shou W., Aghdasi B., Armstrong D. L., Guo Q., Bao S., Charng M. J., Mathews L. M., Schneider M. D., Hamilton S. L., Matzuk M. M. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature. 1998 Jan 29;391(6666):489–492. doi: 10.1038/35146. [DOI] [PubMed] [Google Scholar]
  35. Sipma H., De Smet P., Sienaert I., Vanlingen S., Missiaen L., Parys J. B., De Smedt H. Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4, 5-trisphosphate receptor by Ca2+ and calmodulin. J Biol Chem. 1999 Apr 23;274(17):12157–12162. doi: 10.1074/jbc.274.17.12157. [DOI] [PubMed] [Google Scholar]
  36. Sorrentino V., Reggiani C. Expression of the ryanodine receptor type 3 in skeletal muscle. A new partner in excitation-contraction coupling? Trends Cardiovasc Med. 1999 Jan-Feb;9(1-2):54–61. doi: 10.1016/s1050-1738(99)00003-1. [DOI] [PubMed] [Google Scholar]
  37. Timerman A. P., Jayaraman T., Wiederrecht G., Onoue H., Marks A. R., Fleischer S. The ryanodine receptor from canine heart sarcoplasmic reticulum is associated with a novel FK-506 binding protein. Biochem Biophys Res Commun. 1994 Jan 28;198(2):701–706. doi: 10.1006/bbrc.1994.1101. [DOI] [PubMed] [Google Scholar]
  38. Timerman A. P., Ogunbumni E., Freund E., Wiederrecht G., Marks A. R., Fleischer S. The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Nov 5;268(31):22992–22999. [PubMed] [Google Scholar]
  39. Timerman A. P., Onoue H., Xin H. B., Barg S., Copello J., Wiederrecht G., Fleischer S. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem. 1996 Aug 23;271(34):20385–20391. doi: 10.1074/jbc.271.34.20385. [DOI] [PubMed] [Google Scholar]
  40. Tong J., Oyamada H., Demaurex N., Grinstein S., McCarthy T. V., MacLennan D. H. Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J Biol Chem. 1997 Oct 17;272(42):26332–26339. doi: 10.1074/jbc.272.42.26332. [DOI] [PubMed] [Google Scholar]
  41. Vanlingen S., Parys J. B., Missiaen L., De Smedt H., Wuytack F., Casteels R. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca2+ binding proteins in RBL-2H3 rat basophilic leukemia cells. Cell Calcium. 1997 Dec;22(6):475–486. doi: 10.1016/s0143-4160(97)90075-0. [DOI] [PubMed] [Google Scholar]
  42. Vanlingen S., Sipma H., Missiaen L., De Smedt H., De Smet P., Casteels R., Parys J. B. Modulation of type 1, 2 and 3 inositol 1,4,5-trisphosphate receptors by cyclic ADP-ribose and thimerosal. Cell Calcium. 1999 Feb;25(2):107–114. doi: 10.1054/ceca.1998.0010. [DOI] [PubMed] [Google Scholar]
  43. Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
  44. Xin H. B., Timerman A. P., Onoue H., Wiederrecht G. J., Fleischer S. Affinity purification of the ryanodine receptor/calcium release channel from fast twitch skeletal muscle based on its tight association with FKBP12. Biochem Biophys Res Commun. 1995 Sep 5;214(1):263–270. doi: 10.1006/bbrc.1995.2283. [DOI] [PubMed] [Google Scholar]
  45. Yoshikawa F., Iwasaki H., Michikawa T., Furuichi T., Mikoshiba K. Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. J Biol Chem. 1999 Jan 1;274(1):316–327. doi: 10.1074/jbc.274.1.316. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES