Abstract
Mutagenesis of the beta2-adrenergic receptor (beta2AR) has suggested that amino acids in transmembrane domain 5 (TMD 5) play an important role in the interaction of the receptor with the catechol end of adrenergic agonists. However, little direct biochemical evidence for the interaction of any beta2AR agonist or antagonist with TMD 5 has been reported. To identify receptor amino acids that contribute to the beta2AR antagonist binding site, we identified the precise amino acid photoinsertion site of a novel carazolol-like fluorenone antagonist photoaffinity label, [125I]iodoaminoflisopolol ([125I]IAmF). A unique property of this photolabel is that the photoreactive centre is also the binding pharmacophore, which corresponds to the catechol end of related beta2AR agonists. [125I]IAmF specifically photolabels membrane-bound and purified beta2AR from a baculovirus/Spodoptera frugiperda (fall armyworm) ('Sf9') expression system. When the photolabelled beta2AR was cleaved by trypsin or Factor Xa, 30 kDa labelled peptides were generated. On the basis of concanavalin A binding and amino acid sequencing, these contain the N-terminus of the beta2AR, including TMDs 1-5. Further cleavage of the 30 kDa peptides with endoproteinase Lys-C generated a 4 kDa labelled peptide with an N-terminal amino acid sequence between TMDs 4 and 5. Radiosequencing of this peptide demonstrated that the precise [125I]IAmF photoinsertion site was Tyr(199) in TMD 5. Since the photoreactive centre and the binding pharmacophore of IAmF are the same, these data demonstrate that Tyr(199) interacts with the planar fluorenone moiety of a carazolol-like beta2AR antagonist, and contributes significant new information regarding the binding site for beta2AR antagonists.
Full Text
The Full Text of this article is available as a PDF (238.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dixon R. A., Sigal I. S., Candelore M. R., Register R. B., Scattergood W., Rands E., Strader C. D. Structural features required for ligand binding to the beta-adrenergic receptor. EMBO J. 1987 Nov;6(11):3269–3275. doi: 10.1002/j.1460-2075.1987.tb02645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnelly D., Findlay J. B., Blundell T. L. The evolution and structure of aminergic G protein-coupled receptors. Receptors Channels. 1994;2(1):61–78. [PubMed] [Google Scholar]
- Dormán G., Prestwich G. D. Benzophenone photophores in biochemistry. Biochemistry. 1994 May 17;33(19):5661–5673. doi: 10.1021/bi00185a001. [DOI] [PubMed] [Google Scholar]
- Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
- Hockerman G. H., Girvin M. E., Malbon C. C., Ruoho A. E. Antagonist conformations with the beta(2)-adrenergic receptor ligand binding pocket. Mol Pharmacol. 1996 Jun;49(6):1021–1032. [PubMed] [Google Scholar]
- Horn F., Weare J., Beukers M. W., Hörsch S., Bairoch A., Chen W., Edvardsen O., Campagne F., Vriend G. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 1998 Jan 1;26(1):275–279. doi: 10.1093/nar/26.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Javitch J. A., Fu D., Liapakis G., Chen J. Constitutive activation of the beta2 adrenergic receptor alters the orientation of its sixth membrane-spanning segment. J Biol Chem. 1997 Jul 25;272(30):18546–18549. doi: 10.1074/jbc.272.30.18546. [DOI] [PubMed] [Google Scholar]
- Kobilka B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal Biochem. 1995 Oct 10;231(1):269–271. doi: 10.1006/abio.1995.1533. [DOI] [PubMed] [Google Scholar]
- Kontoyianni M., DeWeese C., Penzotti J. E., Lybrand T. P. Three-dimensional models for agonist and antagonist complexes with beta 2 adrenergic receptor. J Med Chem. 1996 Oct 25;39(22):4406–4420. doi: 10.1021/jm960241a. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Morris A. J., Malbon C. C. Physiological regulation of G protein-linked signaling. Physiol Rev. 1999 Oct;79(4):1373–1430. doi: 10.1152/physrev.1999.79.4.1373. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., Erickson-Viitanen S., DeGrado W. F. Photolabeling of calmodulin with basic, amphiphilic alpha-helical peptides containing p-benzoylphenylalanine. J Biol Chem. 1989 Aug 25;264(24):14571–14578. [PubMed] [Google Scholar]
- Rasmussen S. G., Jensen A. D., Liapakis G., Ghanouni P., Javitch J. A., Gether U. Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol Pharmacol. 1999 Jul;56(1):175–184. doi: 10.1124/mol.56.1.175. [DOI] [PubMed] [Google Scholar]
- Rubenstein R. C., Wong S. K., Ross E. M. The hydrophobic tryptic core of the beta-adrenergic receptor retains Gs regulatory activity in response to agonists and thiols. J Biol Chem. 1987 Dec 5;262(34):16655–16662. [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Strader C. D., Candelore M. R., Hill W. S., Sigal I. S., Dixon R. A. Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem. 1989 Aug 15;264(23):13572–13578. [PubMed] [Google Scholar]
- Wu Z., Ruoho A. E. A high-affinity fluorenone-based beta 2-adrenergic receptor antagonist with a photoactivatable pharmacophore. Biochemistry. 2000 Oct 24;39(42):13044–13052. doi: 10.1021/bi001342k. [DOI] [PubMed] [Google Scholar]