Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 15;354(Pt 3):493–500. doi: 10.1042/0264-6021:3540493

Epicatechin and its in vivo metabolite, 3'-O-methyl epicatechin, protect human fibroblasts from oxidative-stress-induced cell death involving caspase-3 activation.

J P Spencer 1, H Schroeter 1, G Kuhnle 1, S K Srai 1, R M Tyrrell 1, U Hahn 1, C Rice-Evans 1
PMCID: PMC1221680  PMID: 11237853

Abstract

There is considerable current interest in the cytoprotective effects of natural antioxidants against oxidative stress. In particular, epicatechin, a major member of the flavanol family of polyphenols with powerful antioxidant properties in vitro, has been investigated to determine its ability to attenuate oxidative-stress-induced cell damage and to understand the mechanism of its protective action. We have induced oxidative stress in cultured human fibroblasts using hydrogen peroxide and examined the cellular responses in the form of mitochondrial function, cell-membrane damage, annexin-V binding and caspase-3 activation. Since one of the major metabolites of epicatechin in vivo is 3'-O-methyl epicatechin, we have compared its protective effects with that of epicatechin. The results provide the first evidence that 3'-O-methyl epicatechin inhibits cell death induced by hydrogen peroxide and that the mechanism involves suppression of caspase-3 activity as a marker for apoptosis. Furthermore, the protection elicited by 3'-O-methyl epicatechin is not significantly different from that of epicatechin, suggesting that hydrogen-donating antioxidant activity is not the primary mechanism of protection.

Full Text

The Full Text of this article is available as a PDF (207.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aupeix K., Toti F., Satta N., Bischoff P., Freyssinet J. M. Oyxsterols induce membrane procoagulant activity in monocytic THP-1 cells. Biochem J. 1996 Mar 15;314(Pt 3):1027–1033. doi: 10.1042/bj3141027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball P., Knuppen R., Haupt M., Breuer H. Kinetic properties of a soluble catechol O-methyltransferase of human liver. Eur J Biochem. 1972 Apr 24;26(4):560–569. doi: 10.1111/j.1432-1033.1972.tb01799.x. [DOI] [PubMed] [Google Scholar]
  3. Bors W., Heller W., Michel C., Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990;186:343–355. doi: 10.1016/0076-6879(90)86128-i. [DOI] [PubMed] [Google Scholar]
  4. Chen Q. M., Liu J., Merrett J. B. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J. 2000 Apr 15;347(Pt 2):543–551. doi: 10.1042/0264-6021:3470543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung B. H., Wilkinson T., Geer J. C., Segrest J. P. Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980 Mar;21(3):284–291. [PubMed] [Google Scholar]
  6. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of (+)-[14C] catechin in the rat and guinea pig. Biochem J. 1969 Dec;115(4):831–836. doi: 10.1042/bj1150831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis R. J. Signal transduction by the JNK group of MAP kinases. Cell. 2000 Oct 13;103(2):239–252. doi: 10.1016/s0092-8674(00)00116-1. [DOI] [PubMed] [Google Scholar]
  8. Day A. J., DuPont M. S., Ridley S., Rhodes M., Rhodes M. J., Morgan M. R., Williamson G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 1998 Sep 25;436(1):71–75. doi: 10.1016/s0014-5793(98)01101-6. [DOI] [PubMed] [Google Scholar]
  9. Donovan J. L., Bell J. R., Kasim-Karakas S., German J. B., Walzem R. L., Hansen R. J., Waterhouse A. L. Catechin is present as metabolites in human plasma after consumption of red wine. J Nutr. 1999 Sep;129(9):1662–1668. doi: 10.1093/jn/129.9.1662. [DOI] [PubMed] [Google Scholar]
  10. Duthie S. J., Johnson W., Dobson V. L. The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. Mutat Res. 1997 Apr 24;390(1-2):141–151. doi: 10.1016/s0165-1218(97)00010-4. [DOI] [PubMed] [Google Scholar]
  11. Gerritsen M. E., Carley W. W., Ranges G. E., Shen C. P., Phan S. A., Ligon G. F., Perry C. A. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol. 1995 Aug;147(2):278–292. [PMC free article] [PubMed] [Google Scholar]
  12. Harada M., Kan Y., Naoki H., Fukui Y., Kageyama N., Nakai M., Miki W., Kiso Y. Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (-)-epicatechin. Biosci Biotechnol Biochem. 1999 Jun;63(6):973–977. doi: 10.1271/bbb.63.973. [DOI] [PubMed] [Google Scholar]
  13. Jiang Z. Y., Hunt J. V., Wolff S. P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem. 1992 May 1;202(2):384–389. doi: 10.1016/0003-2697(92)90122-n. [DOI] [PubMed] [Google Scholar]
  14. Kuhnle G., Spencer J. P., Schroeter H., Shenoy B., Debnam E. S., Srai S. K., Rice-Evans C., Hahn U. Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem Biophys Res Commun. 2000 Oct 22;277(2):507–512. doi: 10.1006/bbrc.2000.3701. [DOI] [PubMed] [Google Scholar]
  15. Kuhnle GG, Haferburg D, Grunow M, Hirsch D, Hahn U. Nano-electrospray mass spectrometry with a modified commercial IonSpray source. Rapid Commun Mass Spectrom. 2000;14(14):1307–1308. doi: 10.1002/1097-0231(20000730)14:14<1307::AID-RCM33>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  16. Lee S. D., Lee B. D., Han J. M., Kim J. H., Kim Y., Suh P. G., Ryu S. H. Phospholipase D2 activity suppresses hydrogen peroxide-induced apoptosis in PC12 cells. J Neurochem. 2000 Sep;75(3):1053–1059. doi: 10.1046/j.1471-4159.2000.0751053.x. [DOI] [PubMed] [Google Scholar]
  17. Manthey J. A., Grohmann K., Montanari A., Ash K., Manthey C. L. Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-alpha expression by human monocytes. J Nat Prod. 1999 Mar;62(3):441–444. doi: 10.1021/np980431j. [DOI] [PubMed] [Google Scholar]
  18. Martin S. J., Reutelingsperger C. P., McGahon A. J., Rader J. A., van Schie R. C., LaFace D. M., Green D. R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995 Nov 1;182(5):1545–1556. doi: 10.1084/jem.182.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miketova P., Schram K. H., Whitney J. L., Kerns E. H., Valcic S., Timmermann B. N., Volk K. J. Mass spectrometry of selected components of biological interest in green tea extracts. J Nat Prod. 1998 Apr;61(4):461–467. doi: 10.1021/np9703959. [DOI] [PubMed] [Google Scholar]
  20. Musonda C. A., Chipman J. K. Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-kappaB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis. 1998 Sep;19(9):1583–1589. doi: 10.1093/carcin/19.9.1583. [DOI] [PubMed] [Google Scholar]
  21. Okushio K., Suzuki M., Matsumoto N., Nanjo F., Hara Y. Identification of (-)-epicatechin metabolites and their metabolic fate in the rat. Drug Metab Dispos. 1999 Feb;27(2):309–316. [PubMed] [Google Scholar]
  22. Panés J., Gerritsen M. E., Anderson D. C., Miyasaka M., Granger D. N. Apigenin inhibits tumor necrosis factor-induced intercellular adhesion molecule-1 upregulation in vivo. Microcirculation. 1996 Sep;3(3):279–286. doi: 10.3109/10739689609148302. [DOI] [PubMed] [Google Scholar]
  23. Piskula M. K., Terao J. Accumulation of (-)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. J Nutr. 1998 Jul;128(7):1172–1178. doi: 10.1093/jn/128.7.1172. [DOI] [PubMed] [Google Scholar]
  24. Pryor W. A., Castle L. Chemical methods for the detection of lipid hydroperoxides. Methods Enzymol. 1984;105:293–299. doi: 10.1016/s0076-6879(84)05037-0. [DOI] [PubMed] [Google Scholar]
  25. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999 May;26(9-10):1231–1237. doi: 10.1016/s0891-5849(98)00315-3. [DOI] [PubMed] [Google Scholar]
  26. Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–956. doi: 10.1016/0891-5849(95)02227-9. [DOI] [PubMed] [Google Scholar]
  27. Schroeter H., Williams R. J., Matin R., Iversen L., Rice-Evans C. A. Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med. 2000 Dec 15;29(12):1222–1233. doi: 10.1016/s0891-5849(00)00415-9. [DOI] [PubMed] [Google Scholar]
  28. Sestili P., Guidarelli A., Dachà M., Cantoni O. Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: free radical scavenging versus iron chelating mechanism. Free Radic Biol Med. 1998 Jul 15;25(2):196–200. doi: 10.1016/s0891-5849(98)00040-9. [DOI] [PubMed] [Google Scholar]
  29. Shaw I. C., Hackett A. M., Griffiths L. A. Metabolism and excretion of the liver-protective agent (+)-catechin in experimental hepatitis. Xenobiotica. 1982 Jul;12(7):405–416. doi: 10.3109/00498258209052482. [DOI] [PubMed] [Google Scholar]
  30. Skaper S. D., Fabris M., Ferrari V., Dalle Carbonare M., Leon A. Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid. Free Radic Biol Med. 1997;22(4):669–678. doi: 10.1016/s0891-5849(96)00383-8. [DOI] [PubMed] [Google Scholar]
  31. Soriani M., Rice-Evans C., Tyrrell R. M. Modulation of the UVA activation of haem oxygenase, collagenase and cyclooxygenase gene expression by epigallocatechin in human skin cells. FEBS Lett. 1998 Nov 20;439(3):253–257. doi: 10.1016/s0014-5793(98)01387-8. [DOI] [PubMed] [Google Scholar]
  32. Spencer J. P., Chowrimootoo G., Choudhury R., Debnam E. S., Srai S. K., Rice-Evans C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 1999 Sep 17;458(2):224–230. doi: 10.1016/s0014-5793(99)01160-6. [DOI] [PubMed] [Google Scholar]
  33. Sugano N., Ito K., Murai S. Cyclosporin A inhibits H2O2-induced apoptosis of human fibroblasts. FEBS Lett. 1999 Mar 26;447(2-3):274–276. doi: 10.1016/s0014-5793(99)00312-9. [DOI] [PubMed] [Google Scholar]
  34. Teramoto S., Tomita T., Matsui H., Ohga E., Matsuse T., Ouchi Y. Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn J Pharmacol. 1999 Jan;79(1):33–40. doi: 10.1254/jjp.79.33. [DOI] [PubMed] [Google Scholar]
  35. Tsai S. H., Lin-Shiau S. Y., Lin J. K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol. 1999 Feb;126(3):673–680. doi: 10.1038/sj.bjp.0702357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tyrrell R. M., Pidoux M. Quantitative differences in host cell reactivation of ultraviolet-damaged virus in human skin fibroblasts and epidermal keratinocytes cultured from the same foreskin biopsy. Cancer Res. 1986 Jun;46(6):2665–2669. [PubMed] [Google Scholar]
  37. Walle U. K., Galijatovic A., Walle T. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem Pharmacol. 1999 Aug 1;58(3):431–438. doi: 10.1016/s0006-2952(99)00133-1. [DOI] [PubMed] [Google Scholar]
  38. Wang H., Joseph J. A. Structure-activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic Biol Med. 1999 Sep;27(5-6):683–694. doi: 10.1016/s0891-5849(99)00119-7. [DOI] [PubMed] [Google Scholar]
  39. Youdim K. A., Martin A., Joseph J. A. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med. 2000 Jul 1;29(1):51–60. doi: 10.1016/s0891-5849(00)00329-4. [DOI] [PubMed] [Google Scholar]
  40. Yuan J., Yankner B. A. Apoptosis in the nervous system. Nature. 2000 Oct 12;407(6805):802–809. doi: 10.1038/35037739. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES