Abstract
Kinetics are established for the activation of the myofibril from the relaxed state [Smith, Dixon, Kirschenlohr, Grace, Metcalfe and Vandenberg (2000) Biochem. J. 346, 393-402]. These require two troponin Ca2+-binding sites, one for each myosin head, to act as a single unit in initial cross-bridge formation. This defines the first, or activating, ATPase reaction, as distinct from the further activity of the enzyme that continues when a cross-bridge to actin is already established. The pairing of myosin heads to act as one unit suggests a possible alternating mechanism for muscle action. A large positive inotropic (contraction-intensifying) effect of loading the Mg2+ chelator citrate, via its acetoxymethyl ester, into the heart has confirmed the competitive inhibition of the Ca2+ activation by Mg2+, previously seen in vitro. In the absence of a recognized second Ca2+ binding site on the myofibril, with appropriate binding properties, the bound ATP is proposed as the second activating Ca2+-binding site. As ATP, free or bound to protein, can bind either Mg2+ or Ca2+, this leads to competitive inhibition by Mg2+. Published physico-chemical studies on skeletal muscle have shown that CaATP is potentially a more effective substrate than MgATP for cross-bridge formation. The above considerations allow calculation of the observed variation of fractional activation by Ca2+ as a function of [Mg2+] and in turn reveal simple Michaelis-Menten kinetics for the activation of the ATPase by sub-millimolar [Mg2+]. Furthermore the ability of bound ATP to bind either cation, and the much better promotion of cross-bridge formation by CaATP binding, give rise to the observed variation of the Hill coefficient for Ca2+ activation with altered [Mg2+]. The inclusion of CaADP within the initiating cross-bridge and replacement by MgADP during the second cycle is consistent with the observed fall in the rate of the myofibril ATPase that occurs after two phosphates are released. The similarity of the kinetics of the cardiac sarcoplasmic reticulum ATPase to those of the myofibril, in particular the positive co-operativity of both Mg2+ inhibition and Ca2+ activation, leads to the conclusion that this ATPase also has an initiation step that utilizes CaATP. The first-order activation by sub-millimolar [Mg2+], similar to that of the myofibril, may be explained by Mg2+ involvement in the phosphate-release step of the ATPase. The inhibition of both the myofibril and sarcoplasmic reticulum Ca2+ transporting ATPases by Mg2+ offers an explanation for the specific requirement for phosphocreatine (PCr) for full activity of both enzymes in situ and its effect on their apparent affinities for ATP. This explanation is based on the slow diffusion of Mg2+ within the myofibril and on the contrast of PCr with both ATP and phosphoenolpyruvate, in that PCr does not bind Mg2+ under physiological conditions, whereas both the other two bind it more tightly than the products of their hydrolysis do. The switch to supply of energy by diffusion of MgATP into the myofibril when depletion of PCr raises [ATP]/[PCr] greatly, e.g. during anoxia, results in a local [Mg2+] increase, which inhibits the ATPase. It is possible that mechanisms similar to those described above occur in skeletal muscle but the Ca2+ co-operativity involved would be masked by the presence of two Ca2+ binding sites on each troponin.
Full Text
The Full Text of this article is available as a PDF (214.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arata T., Mukohata Y., Tonomura Y. Structure and function of the two heads of the myosin molecule. VI. ATP hydrolysis, shortening, and tension development of myofibrils. J Biochem. 1977 Sep;82(3):801–812. doi: 10.1093/oxfordjournals.jbchem.a131756. [DOI] [PubMed] [Google Scholar]
- Ashley C. C., Moisescu D. G. Model for the action of calcium in muscle. Nat New Biol. 1972 Jun 14;237(76):208–211. doi: 10.1038/newbio237208a0. [DOI] [PubMed] [Google Scholar]
- Ashley C. C., Mulligan I. P., Lea T. J. Ca2+ and activation mechanisms in skeletal muscle. Q Rev Biophys. 1991 Feb;24(1):1–73. doi: 10.1017/s0033583500003267. [DOI] [PubMed] [Google Scholar]
- Backx P. H., O'Rourke B., Marban E. Flash photolysis of magnesium-DM-nitrophen in heart cells. A novel approach to probe magnesium- and ATP-dependent regulation of calcium channels. Am J Hypertens. 1991 Jul;4(7 Pt 2):416S–421S. doi: 10.1093/ajh/4.7.416s. [DOI] [PubMed] [Google Scholar]
- Chamberlain B. K., Berenski C. J., Jung C. Y., Fleischer S. Determination of the oligomeric structure of the Ca2+ pump protein in canine cardiac sarcoplasmic reticulum membranes using radiation inactivation analysis. J Biol Chem. 1983 Oct 10;258(19):11997–12001. [PubMed] [Google Scholar]
- Donaldson S. K., Best P. M., Kerrick G. L. Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers. J Gen Physiol. 1978 Jun;71(6):645–655. doi: 10.1085/jgp.71.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donaldson S. K., Kerrick W. G. Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J Gen Physiol. 1975 Oct;66(4):427–444. doi: 10.1085/jgp.66.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duke A. M., Steele D. S. Characteristics of phosphate-induced Ca(2+) efflux from the SR in mechanically skinned rat skeletal muscle fibers. Am J Physiol Cell Physiol. 2000 Jan;278(1):C126–C135. doi: 10.1152/ajpcell.2000.278.1.C126. [DOI] [PubMed] [Google Scholar]
- Duke A. M., Steele D. S. Effects of creatine phosphate on Ca2+ regulation by the sarcoplasmic reticulum in mechanically skinned rat skeletal muscle fibres. J Physiol. 1999 Jun 1;517(Pt 2):447–458. doi: 10.1111/j.1469-7793.1999.0447t.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott A. C., Smith G. L., Eisner D. A., Allen D. G. Metabolic changes during ischaemia and their role in contractile failure in isolated ferret hearts. J Physiol. 1992 Aug;454:467–490. doi: 10.1113/jphysiol.1992.sp019274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
- Forge V., Mintz E., Guillain F. Ca2+ binding to sarcoplasmic reticulum ATPase revisited. I. Mechanism of affinity and cooperativity modulation by H+ and Mg2+. J Biol Chem. 1993 May 25;268(15):10953–10960. [PubMed] [Google Scholar]
- Freestone N., Singh J., Krause E. G., Vetter R. Early postnatal changes in sarcoplasmic reticulum calcium transport function in spontaneously hypertensive rats. Mol Cell Biochem. 1996 Oct-Nov;163-164:57–66. doi: 10.1007/BF00408641. [DOI] [PubMed] [Google Scholar]
- Gao W. D., Backx P. H., Azan-Backx M., Marban E. Myofilament Ca2+ sensitivity in intact versus skinned rat ventricular muscle. Circ Res. 1994 Mar;74(3):408–415. doi: 10.1161/01.res.74.3.408. [DOI] [PubMed] [Google Scholar]
- Goodno C. C., Wall C. M., Perry S. V. Kinetics and regulation of the myofibrillar adenosine triphosphatase. Biochem J. 1978 Dec 1;175(3):813–821. doi: 10.1042/bj1750813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
- Griffiths E. J. Calcium handling and cell contraction in rat cardiomyocytes depleted of intracellular magnesium. Cardiovasc Res. 2000 Jul;47(1):116–123. doi: 10.1016/s0008-6363(00)00061-4. [DOI] [PubMed] [Google Scholar]
- Hamman B. L., Bittl J. A., Jacobus W. E., Allen P. D., Spencer R. S., Tian R., Ingwall J. S. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol. 1995 Sep;269(3 Pt 2):H1030–H1036. doi: 10.1152/ajpheart.1995.269.3.H1030. [DOI] [PubMed] [Google Scholar]
- Harding D. P., Smith G. A., Metcalfe J. C., Morris P. G., Kirschenlohr H. L. Resting and end-diastolic [Ca2+]i measurements in the Langendorff-perfused ferret heart loaded with a 19F NMR indicator. Magn Reson Med. 1993 May;29(5):605–615. doi: 10.1002/mrm.1910290505. [DOI] [PubMed] [Google Scholar]
- Harrison S. M., Bers D. M. Influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit. J Gen Physiol. 1989 Mar;93(3):411–428. doi: 10.1085/jgp.93.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He Z. H., Chillingworth R. K., Brune M., Corrie J. E., Trentham D. R., Webb M. R., Ferenczi M. A. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. J Physiol. 1997 May 15;501(Pt 1):125–148. doi: 10.1111/j.1469-7793.1997.125bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He Z. H., Chillingworth R. K., Brune M., Corrie J. E., Webb M. R., Ferenczi M. A. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate. J Physiol. 1999 Jun 15;517(Pt 3):839–854. doi: 10.1111/j.1469-7793.1999.0839s.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoerter J. A., Lauer C., Vassort G., Guéron M. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study. Am J Physiol. 1988 Aug;255(2 Pt 1):C192–C201. doi: 10.1152/ajpcell.1988.255.2.C192. [DOI] [PubMed] [Google Scholar]
- Holroyde M. J., Robertson S. P., Johnson J. D., Solaro R. J., Potter J. D. The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1980 Dec 25;255(24):11688–11693. [PubMed] [Google Scholar]
- Hoskins B. K., Lipscomb S., Mulligan I. P., Ashley C. C. How do skinned skeletal muscle fibers relax? Biochem Biophys Res Commun. 1999 Jan 19;254(2):330–333. doi: 10.1006/bbrc.1998.9879. [DOI] [PubMed] [Google Scholar]
- Ivanov G. G., Zueva M. Iu, Alkadarskii A. A., Shekhonin B. V. Ca2+-aktiviruemaia ATFaznaia reaktsiia miozina iz cerdechnykh, skeletnykh i gladikh myshts cheloveka. Biofizika. 1981 Nov-Dec;26(6):1063–1066. [PubMed] [Google Scholar]
- Katayama E., Ohmori G., Baba N. Three-dimensional image analysis of myosin head in function as captured by quick-freeze deep-etch replica electron microscopy. Adv Exp Med Biol. 1998;453:37–45. doi: 10.1007/978-1-4684-6039-1_5. [DOI] [PubMed] [Google Scholar]
- Katayama E. Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay. J Mol Biol. 1998 May 1;278(2):349–367. doi: 10.1006/jmbi.1998.1715. [DOI] [PubMed] [Google Scholar]
- Keevil V. L., Huang C. L., Chau P. L., Sayeed R. A., Vandenberg J. I. The effect of heptanol on the electrical and contractile function of the isolated, perfused rabbit heart. Pflugers Arch. 2000 Jun;440(2):275–282. doi: 10.1007/s004240000264. [DOI] [PubMed] [Google Scholar]
- Kijima Y., Takagi T., Shigekawa M., Tada M. Protein-protein interaction of detergent-solubilized Ca2(+)-ATPase during ATP hydrolysis analyzed by low-angle laser light scattering photometry coupled with high-performance gel chromatography. Biochim Biophys Acta. 1990 Oct 18;1041(1):1–8. doi: 10.1016/0167-4838(90)90114-u. [DOI] [PubMed] [Google Scholar]
- Kirschenlohr H. L., Grace A. A., Vandenberg J. I., Metcalfe J. C., Smith G. A. Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart. Biochem J. 2000 Mar 1;346(Pt 2):385–391. [PMC free article] [PubMed] [Google Scholar]
- Kirschenlohr H. L., Metcalfe J. C., Morris P. G., Rodrigo G. C., Smith G. A. Ca2+ transient, Mg2+, and pH measurements in the cardiac cycle by 19F NMR. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9017–9021. doi: 10.1073/pnas.85.23.9017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krause S. M. Effect of increased free [Mg2+]i with myocardial stunning on sarcoplasmic reticulum Ca(2+)-ATPase activity. Am J Physiol. 1991 Jul;261(1 Pt 2):H229–H235. doi: 10.1152/ajpheart.1991.261.1.H229. [DOI] [PubMed] [Google Scholar]
- Krause S. M. Increased intracellular magnesium contributes to impairment of postischaemic cardiac function. Cardiovasc Res. 1995 Mar;29(3):438–438. [PubMed] [Google Scholar]
- Krause S. M., Jacobus W. E. Specific enhancement of the cardiac myofibrillar ATPase by bound creatine kinase. J Biol Chem. 1992 Feb 5;267(4):2480–2486. [PubMed] [Google Scholar]
- Krause S. M., Rozanski D. Effects of an increase in intracellular free [Mg2+] after myocardial stunning on sarcoplasmic reticulum Ca2+ transport. Circulation. 1991 Sep;84(3):1378–1383. doi: 10.1161/01.cir.84.3.1378. [DOI] [PubMed] [Google Scholar]
- Kupriyanov V. V., Lakomkin V. L., Kapelko V. I., Steinschneider AYa, Ruuge E. K., Saks V. A. Dissociation of adenosine triphosphate levels and contractile function in isovolumic hearts perfused with 2-deoxyglucose. J Mol Cell Cardiol. 1987 Aug;19(8):729–740. doi: 10.1016/s0022-2828(87)80384-x. [DOI] [PubMed] [Google Scholar]
- Kushmerick M. J. Multiple equilibria of cations with metabolites in muscle bioenergetics. Am J Physiol. 1997 May;272(5 Pt 1):C1739–C1747. doi: 10.1152/ajpcell.1997.272.5.C1739. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee J. A., Allen D. G. Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. J Clin Invest. 1991 Aug;88(2):361–367. doi: 10.1172/JCI115311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leyssens A., Nowicky A. V., Patterson L., Crompton M., Duchen M. R. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. J Physiol. 1996 Oct 1;496(Pt 1):111–128. doi: 10.1113/jphysiol.1996.sp021669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu B., Wang L. C., Belke D. D. Effects of temperature and pH on cardiac myofilament Ca2+ sensitivity in rat and ground squirrel. Am J Physiol. 1993 Jan;264(1 Pt 2):R104–R108. doi: 10.1152/ajpregu.1993.264.1.R104. [DOI] [PubMed] [Google Scholar]
- Matthews P. M., Taylor D. J., Radda G. K. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart. Cardiovasc Res. 1986 Jan;20(1):13–19. doi: 10.1093/cvr/20.1.13. [DOI] [PubMed] [Google Scholar]
- Minajeva A., Ventura-Clapier R., Veksler V. Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflugers Arch. 1996 Sep;432(5):904–912. doi: 10.1007/s004240050214. [DOI] [PubMed] [Google Scholar]
- Morimoto S., Ohtsuki I. Ca2+ binding to cardiac troponin C in the myofilament lattice and its relation to the myofibrillar ATPase activity. Eur J Biochem. 1994 Dec 1;226(2):597–602. doi: 10.1111/j.1432-1033.1994.tb20085.x. [DOI] [PubMed] [Google Scholar]
- Morimoto S. The effect of Mg2+ on the Ca2+ binding to troponin C in rabbit fast skeletal myofibrils. Biochim Biophys Acta. 1991 Mar 4;1073(2):336–340. doi: 10.1016/0304-4165(91)90140-c. [DOI] [PubMed] [Google Scholar]
- Nakamura J., Tajima G. Negative or positive cooperation in calcium binding to detergent-solubilized ATPase of the sarcoplasmic reticulum. Its modulation by a high concentration of ATP. J Biol Chem. 1995 Jul 21;270(29):17350–17354. doi: 10.1074/jbc.270.29.17350. [DOI] [PubMed] [Google Scholar]
- O'SULLIVAN W. J., PERRIN D. D. THE STABILITY CONSTANTS OF METAL-ADENINE NUCLEOTIDE COMPLEXES. Biochemistry. 1964 Jan;3:18–26. doi: 10.1021/bi00889a005. [DOI] [PubMed] [Google Scholar]
- Pan B. S., Solaro R. J. Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers. J Biol Chem. 1987 Jun 5;262(16):7839–7849. [PubMed] [Google Scholar]
- Petushkova E. V. Analiz kinetiki gidroliza svobodnoi ATP i Mg-ATP estestvennym aktomiozinom. Biokhimiia. 1976 Dec;41(12):2161–2172. [PubMed] [Google Scholar]
- Peyser Y. M., Ben-Hur M., Werber M. M., Muhlrad A. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes. Biochemistry. 1996 Apr 9;35(14):4409–4416. doi: 10.1021/bi952565r. [DOI] [PubMed] [Google Scholar]
- Polosukhina K., Eden D., Chinn M., Highsmith S. CaATP as a substrate to investigate the myosin lever arm hypothesis of force generation. Biophys J. 2000 Mar;78(3):1474–1481. doi: 10.1016/S0006-3495(00)76700-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauch U., Schulze K., Witzenbichler B., Schultheiss H. P. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure. Circ Res. 1994 Oct;75(4):760–769. doi: 10.1161/01.res.75.4.760. [DOI] [PubMed] [Google Scholar]
- Sata M., Sugiura S., Yamashita H., Momomura S., Serizawa T. Coupling between myosin ATPase cycle and creatinine kinase cycle facilitates cardiac actomyosin sliding in vitro. A clue to mechanical dysfunction during myocardial ischemia. Circulation. 1996 Jan 15;93(2):310–317. doi: 10.1161/01.cir.93.2.310. [DOI] [PubMed] [Google Scholar]
- Silverman H. S., Di Lisa F., Hui R. C., Miyata H., Sollott S. J., Hanford R. G., Lakatta E. G., Stern M. D. Regulation of intracellular free Mg2+ and contraction in single adult mammalian cardiac myocytes. Am J Physiol. 1994 Jan;266(1 Pt 1):C222–C233. doi: 10.1152/ajpcell.1994.266.1.C222. [DOI] [PubMed] [Google Scholar]
- Smith G. A., Dixon H. B., Kirschenlohr H. L., Grace A. A., Metcalfe J. C., Vandenberg J. I. Ca2+ buffering in the heart: Ca2+ binding to and activation of cardiac myofibrils. Biochem J. 2000 Mar 1;346(Pt 2):393–402. [PMC free article] [PubMed] [Google Scholar]
- Solaro R. J., Briggs F. N. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Calcium binding. Circ Res. 1974 Apr;34(4):531–540. doi: 10.1161/01.res.34.4.531. [DOI] [PubMed] [Google Scholar]
- Solaro R. J. Calcium regulation of cardiac myofibrillar activation: effects of MgATP. J Supramol Struct. 1975;3(4):368–375. doi: 10.1002/jss.400030409. [DOI] [PubMed] [Google Scholar]
- Solaro R. J., Shiner J. S. Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Comparison with rabbit skeletal myofibrils. Circ Res. 1976 Jul;39(1):8–14. doi: 10.1161/01.res.39.1.8. [DOI] [PubMed] [Google Scholar]
- Steeghs K., Benders A., Oerlemans F., de Haan A., Heerschap A., Ruitenbeek W., Jost C., van Deursen J., Perryman B., Pette D. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell. 1997 Apr 4;89(1):93–103. doi: 10.1016/s0092-8674(00)80186-5. [DOI] [PubMed] [Google Scholar]
- Stephenson D. G., Williams D. A. Temperature-dependent calcium sensitivity changes in skinned muscle fibres of rat and toad. J Physiol. 1985 Mar;360:1–12. doi: 10.1113/jphysiol.1985.sp015600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweitzer N. K., Moss R. L. The effect of altered temperature on Ca2(+)-sensitive force in permeabilized myocardium and skeletal muscle. Evidence for force dependence of thin filament activation. J Gen Physiol. 1990 Dec;96(6):1221–1245. doi: 10.1085/jgp.96.6.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
- Vandenberg J. I., Metcalfe J. C., Grace A. A. Mechanisms of pHi recovery after global ischemia in the perfused heart. Circ Res. 1993 May;72(5):993–1003. doi: 10.1161/01.res.72.5.993. [DOI] [PubMed] [Google Scholar]
- Veksler V. I., Lechene P., Matrougui K., Ventura-Clapier R. Rigor tension in single skinned rat cardiac cell: role of myofibrillar creatine kinase. Cardiovasc Res. 1997 Dec;36(3):354–362. doi: 10.1016/s0008-6363(97)00178-8. [DOI] [PubMed] [Google Scholar]
- Vetter R., Rupp H. CPT-1 inhibition by etomoxir has a chamber-related action on cardiac sarcoplasmic reticulum and isomyosins. Am J Physiol. 1994 Dec;267(6 Pt 2):H2091–H2099. doi: 10.1152/ajpheart.1994.267.6.H2091. [DOI] [PubMed] [Google Scholar]
- Vetter R., Will H. Sarcolemmal Na-Ca exchange and sarcoplasmic reticulum calcium uptake in developing chick heart. J Mol Cell Cardiol. 1986 Dec;18(12):1267–1275. doi: 10.1016/s0022-2828(86)80430-8. [DOI] [PubMed] [Google Scholar]
- Voss J., Birmachu W., Hussey D. M., Thomas D. D. Effects of melittin on molecular dynamics and Ca-ATPase activity in sarcoplasmic reticulum membranes: time-resolved optical anisotropy. Biochemistry. 1991 Jul 30;30(30):7498–7506. doi: 10.1021/bi00244a019. [DOI] [PubMed] [Google Scholar]
- WARD P. F., PETERS R. A. The chemical and biochemical properties of fluorocitric acid. Biochem J. 1961 Mar;78:661–668. doi: 10.1042/bj0780661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakabayashi S., Shigekawa M. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase. J Biol Chem. 1987 Aug 25;262(24):11524–11531. [PubMed] [Google Scholar]
- Welte W., Leonhard M., Diederichs K., Weltzien H. U., Restall C., Hall C., Chapman D. Stabilization of detergent-solubilized Ca2+-ATPase by poly(ethylene glycol). Biochim Biophys Acta. 1989 Sep 4;984(2):193–199. doi: 10.1016/0005-2736(89)90216-2. [DOI] [PubMed] [Google Scholar]
- Yamada S., Ikemoto N. Reaction mechanism of calcium-ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates. J Biol Chem. 1980 Apr 10;255(7):3108–3119. [PubMed] [Google Scholar]
- Yue D. T., Marban E., Wier W. G. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle. J Gen Physiol. 1986 Feb;87(2):223–242. doi: 10.1085/jgp.87.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]