Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 15;354(Pt 3):591–596. doi: 10.1042/0264-6021:3540591

Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats.

S Yasumiba 1, S Tazuma 1, H Ochi 1, K Chayama 1, G Kajiyama 1
PMCID: PMC1221690  PMID: 11237863

Abstract

Changes of the biliary canalicular membrane lipid content can affect membrane fluidity and biliary lipid secretion in rats. The immunosuppressant cyclosporin A is known to cause intrahepatic cholestasis. This study investigated whether cyclosporin A influenced canalicular membrane fluidity by altering membrane phospholipids or transporter expression. In male Sprague-Dawley rats, a bile-duct cannula was inserted to collect bile, and sodium taurocholate was infused (100 nmol/min per 100 g) for 60 min. During steady-state taurocholate infusion, cyclosporin A (20 mg/kg) or vehicle was injected intravenously and then bile was collected for 80 min. After killing the rats, canalicular membrane vesicles were prepared. Expression of canalicular membrane transporters was assessed by Western blotting and canalicular membrane vesicle fluidity was estimated by fluorescence polarization. Cyclosporin A reduced biliary lipid secretion along with a disproportionate reduction of lipids relative to bile acids. Cyclosporin A significantly decreased canalicular membrane fluidity along with an increase of the cholesterol/phospholipid molar ratio. Only expression of the transporter P-glycoprotein was increased by cyclosporin A. Because canalicular membrane transporter expression was largely unchanged by cyclosporin A despite a marked decrease of biliary lipid secretion, transporter activity may partly depend upon canalicular membrane fluidity.

Full Text

The Full Text of this article is available as a PDF (142.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. Azer S. A., Stacey N. H. Cyclosporine-induced interference with uptake of bile acids by human hepatocytes. Transplant Proc. 1993 Oct;25(5):2892–2893. [PubMed] [Google Scholar]
  3. Azer S. A., Stacey N. H. Differential effects of cyclosporin A on the transport of bile acids by human hepatocytes. Biochem Pharmacol. 1993 Sep 1;46(5):813–819. doi: 10.1016/0006-2952(93)90489-j. [DOI] [PubMed] [Google Scholar]
  4. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  5. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  6. Borel J. F., Di Padova F., Mason J., Quesniaux V., Ryffel B., Wenger R. Pharmacology of cyclosporine (sandimmune). I. Introduction. Pharmacol Rev. 1990 Sep;41(3):239–242. [PubMed] [Google Scholar]
  7. Bäckman L., Appelkvist E. L., Brunk U., Dallner G. Influence of cyclosporin A treatment on intracellular membranes of hepatocytes. Exp Mol Pathol. 1986 Aug;45(1):31–43. doi: 10.1016/0014-4800(86)90004-3. [DOI] [PubMed] [Google Scholar]
  8. Bäckman L., Appelkvist E. L., Dallner G. Influence of cyclosporine A on protein synthesis in rat liver. Exp Mol Pathol. 1988 Aug;49(1):38–49. doi: 10.1016/0014-4800(88)90019-6. [DOI] [PubMed] [Google Scholar]
  9. Böhme M., Büchler M., Müller M., Keppler D. Differential inhibition by cyclosporins of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane. FEBS Lett. 1993 Oct 25;333(1-2):193–196. doi: 10.1016/0014-5793(93)80403-h. [DOI] [PubMed] [Google Scholar]
  10. Böhme M., Jedlitschky G., Leier I., Büchler M., Keppler D. ATP-dependent export pumps and their inhibition by cyclosporins. Adv Enzyme Regul. 1994;34:371–380. doi: 10.1016/0065-2571(94)90023-x. [DOI] [PubMed] [Google Scholar]
  11. Böhme M., Müller M., Leier I., Jedlitschky G., Keppler D. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology. 1994 Jul;107(1):255–265. doi: 10.1016/0016-5085(94)90084-1. [DOI] [PubMed] [Google Scholar]
  12. Davis R. A., Kern F., Jr, Showalter R., Sutherland E., Sinensky M., Simon F. R. Alterations of hepatic Na+,K+-atpase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4130–4134. doi: 10.1073/pnas.75.9.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dipple I., Houslay M. D. The activity of glucagon-stimulated adenylate cyclase from rat liver plasma membranes is modulated by the fluidity of its lipid environment. Biochem J. 1978 Jul 15;174(1):179–190. doi: 10.1042/bj1740179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fernández E., Galán A. I., Morán D., González-Buitrago J. M., Muñoz M. E., Jiménez R. Reversal of cyclosporine A-induced alterations in biliary secretion by S-adenosyl-L-methionine in rats. J Pharmacol Exp Ther. 1995 Oct;275(1):442–449. [PubMed] [Google Scholar]
  15. Galan A. I., Zapata A. J., Roman I. D., Muñoz M. E., Muriel C., Gonzalez J., Jimenez R. Impairment of maximal bilirubin secretion by cyclosporin A in the rat. Arch Int Physiol Biochim Biophys. 1991 Dec;99(6):373–376. [PubMed] [Google Scholar]
  16. Galán A. I., Román I. D., Muñoz M. E., Cava F., Gonzalez-Buitrago J. M., Esteller A., Jimenez R. Inhibition of biliary lipid and protein secretion by cyclosporine A in the rat. Biochem Pharmacol. 1992 Sep 25;44(6):1105–1113. doi: 10.1016/0006-2952(92)90374-r. [DOI] [PubMed] [Google Scholar]
  17. Hyogo H., Tazuma S., Kajiyama G. Transcytotic vesicle fusion is reduced in cholestatic rats: redistribution of phospholipids in the canalicular membrane. Dig Dis Sci. 1999 Aug;44(8):1662–1668. doi: 10.1023/a:1026639716440. [DOI] [PubMed] [Google Scholar]
  18. Inoue M., Kinne R., Tran T., Biempica L., Arias I. M. Rat liver canalicular membrane vesicles. Isolation and topological characterization. J Biol Chem. 1983 Apr 25;258(8):5183–5188. [PubMed] [Google Scholar]
  19. Ishizaki K., Kinbara S., Miyazawa N., Takeuchi Y., Hirabayashi N., Kasai H., Araki T. The biochemical studies on phalloidin-induced cholestasis in rats. Toxicol Lett. 1997 Jan 15;90(1):29–34. doi: 10.1016/s0378-4274(96)03826-x. [DOI] [PubMed] [Google Scholar]
  20. Jetté L., Beaulieu E., Leclerc J. M., Béliveau R. Cyclosporin A treatment induces overexpression of P-glycoprotein in the kidney and other tissues. Am J Physiol. 1996 May;270(5 Pt 2):F756–F765. doi: 10.1152/ajprenal.1996.270.5.F756. [DOI] [PubMed] [Google Scholar]
  21. Jetté L., Murphy G. F., Béliveau R. Drug binding to P-glycoprotein is inhibited in normal tissues following SDZ-PSC 833 treatment. Int J Cancer. 1998 May 29;76(5):729–737. doi: 10.1002/(sici)1097-0215(19980529)76:5<729::aid-ijc19>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  22. Kadmon M., Klünemann C., Böhme M., Ishikawa T., Gorgas K., Otto G., Herfarth C., Keppler D. Inhibition by cyclosporin A of adenosine triphosphate-dependent transport from the hepatocyte into bile. Gastroenterology. 1993 May;104(5):1507–1514. doi: 10.1016/0016-5085(93)90363-h. [DOI] [PubMed] [Google Scholar]
  23. Kawato S., Kinosita K., Jr, Ikegami A. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977 May 31;16(11):2319–2324. doi: 10.1021/bi00630a002. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Le Thai B., Dumont M., Michel A., Erlinger S., Houssin D. Cholestatic effect of cyclosporine in the rat. An inhibition of bile acid secretion. Transplantation. 1988 Oct;46(4):510–512. doi: 10.1097/00007890-198810000-00008. [DOI] [PubMed] [Google Scholar]
  26. Lentz B. R., Moore B. M., Barrow D. A. Light-scattering effects in the measurement of membrane microviscosity with diphenylhexatriene. Biophys J. 1979 Mar;25(3):489–494. doi: 10.1016/S0006-3495(79)85318-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maurer G. Metabolism of cyclosporine. Transplant Proc. 1985 Aug;17(4 Suppl 1):19–26. [PubMed] [Google Scholar]
  28. Mills P. R., Meier P. J., Smith D. J., Ballatori N., Boyer J. L., Gordon E. R. The effect of changes in the fluid state of rat liver plasma membrane on the transport of taurocholate. Hepatology. 1987 Jan-Feb;7(1):61–66. doi: 10.1002/hep.1840070114. [DOI] [PubMed] [Google Scholar]
  29. Miura H., Tazuma S., Kajiyama G. Partial characterization of regulation of biliary lecithin hydrophobicity: association with organic anion-induced solute cholestasis in rats. Biochem J. 1995 Dec 15;312(Pt 3):795–797. doi: 10.1042/bj3120795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miura H., Tazuma S., Yamashita G., Hatsushika S., Kajiyama G. Effect of cholestasis induced by organic anion on the lipid composition of hepatic membrane subfractions and bile in rats. J Gastroenterol Hepatol. 1997 Nov;12(11):734–739. doi: 10.1111/j.1440-1746.1997.tb00361.x. [DOI] [PubMed] [Google Scholar]
  31. Miura H., Tazuma S., Yamashita G., Kajiyama G. Extracellular and intracellular regulation of biliary lecithin hydrophobicity. Dig Dis Sci. 1998 Jan;43(1):183–187. doi: 10.1023/a:1018856911587. [DOI] [PubMed] [Google Scholar]
  32. Miyake H., Tazuma S., Miura H., Yamashita G., Kajiyama G. Partial characterization of mechanisms of cytoprotective action of hydrophilic bile salts against hydrophobic bile salts in rats: relation to canalicular membrane fluidity and packing density. Dig Dis Sci. 1999 Jan;44(1):197–202. doi: 10.1023/a:1026687108185. [DOI] [PubMed] [Google Scholar]
  33. Moseley R. H., Johnson T. R., Morrissette J. M. Inhibition of bile acid transport by cyclosporine A in rat liver plasma membrane vesicles. J Pharmacol Exp Ther. 1990 Jun;253(3):974–980. [PubMed] [Google Scholar]
  34. Queneau P. E., Bertault-Peres P., Guitaoui M., Mesdjian E., Durand A., Montet J. C. Improvement of cyclosporin A-induced cholestasis by tauroursodeoxycholate in a long-term study in the rat. Dig Dis Sci. 1994 Jul;39(7):1581–1585. doi: 10.1007/BF02088068. [DOI] [PubMed] [Google Scholar]
  35. Queneau P. E., Bertault-Perès P., Mesdjian E., Durand A., Montet J. C. Diminution of an acute cyclosporin-induced cholestasis by tauroursodeoxycholate in the rat. Transplantation. 1993 Sep;56(3):530–534. doi: 10.1097/00007890-199309000-00008. [DOI] [PubMed] [Google Scholar]
  36. Reichen J., Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol. 1976 Sep;231(3):734–742. doi: 10.1152/ajplegacy.1976.231.3.734. [DOI] [PubMed] [Google Scholar]
  37. Roman I. D., Monte M. J., Esteller A., Jimenez R. Cholestasis in the rat by means of intravenous administration of cyclosporine vehicle, Cremophor EL. Transplantation. 1989 Oct;48(4):554–558. doi: 10.1097/00007890-198910000-00003. [DOI] [PubMed] [Google Scholar]
  38. Román I. D., Monte M. J., Gonzalez-Buitrago J. M., Esteller A., Jiménez R. Inhibition of hepatocytary vesicular transport by cyclosporin A in the rat: relationship with cholestasis and hyperbilirubinemia. Hepatology. 1990 Jul;12(1):83–91. doi: 10.1002/hep.1840120114. [DOI] [PubMed] [Google Scholar]
  39. Rossaro L., Dowd S. R., Ho C., Van Thiel D. H. 19F nuclear magnetic resonance studies of cyclosporine and model unilamellar vesicles: where does the drug sit within the membrane? Transplant Proc. 1988 Apr;20(2 Suppl 2):41–45. [PubMed] [Google Scholar]
  40. Rossaro L., Mazzaferro V., Scotti-Foglieni C. L., Williams D. S., Simplaceanu E., Simplaceanu V., Francavilla A., Starzl T. E., Ho C., Van Thiel D. H. Effect of cyclosporine on hepatic energy status and on fructose metabolism after portacaval shunt in dog as monitored by phosphorus-31 nuclear magnetic resonance spectroscopy in vivo. Hepatology. 1991 Apr;13(4):780–785. [PMC free article] [PubMed] [Google Scholar]
  41. Rotolo F. S., Branum G. D., Bowers B. A., Meyers W. C. Effect of cyclosporine on bile secretion in rats. Am J Surg. 1986 Jan;151(1):35–40. doi: 10.1016/0002-9610(86)90008-5. [DOI] [PubMed] [Google Scholar]
  42. Saeki T., Ueda K., Tanigawara Y., Hori R., Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993 Mar 25;268(9):6077–6080. [PubMed] [Google Scholar]
  43. Schachter D. Fluidity and function of hepatocyte plasma membranes. Hepatology. 1984 Jan-Feb;4(1):140–151. doi: 10.1002/hep.1840040124. [DOI] [PubMed] [Google Scholar]
  44. Sinicrope F. A., Dudeja P. K., Bissonnette B. M., Safa A. R., Brasitus T. A. Modulation of P-glycoprotein-mediated drug transport by alterations in lipid fluidity of rat liver canalicular membrane vesicles. J Biol Chem. 1992 Dec 15;267(35):24995–25002. [PubMed] [Google Scholar]
  45. Stieger B., Fattinger K., Madon J., Kullak-Ublick G. A., Meier P. J. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000 Feb;118(2):422–430. doi: 10.1016/s0016-5085(00)70224-1. [DOI] [PubMed] [Google Scholar]
  46. Turley S. D., Dietschy J. M. Re-evaluation of the 3 alpha-hydroxysteroid dehydrogenase assay for total bile acids in bile. J Lipid Res. 1978 Sep;19(7):924–928. [PubMed] [Google Scholar]
  47. Yamazaki K., Powers S. P., LaRusso N. F. Biliary proteins: assessment of quantitative techniques and comparison in gallstone and nongallstone subjects. J Lipid Res. 1988 Aug;29(8):1055–1063. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES