Abstract
Glyoxylate is an important intermediate of the central microbial metabolism formed from acetate, allantoin or glycolate. Depending on the physiological conditions, glyoxylate is incorporated into the central metabolism by the combined actions of the activity of malate synthase and the D-glycerate pathway, or alternatively it can be reduced to glycolate by constitutive glyoxylate reductase activity. At present no information is available on this latter enzyme in Escherichia coli, although similar enzymes, classified as 2-hydroxyacid dehydrogenases, have been characterized in other organisms. A BLAST search using as the query sequence the hydroxypyruvate/glyoxylate reductase from Cucumis sativus identified as an orthologue the yiaE gene of E. coli encoding a ketoaldonate reductase. Use of this sequence in a subsequent BLAST search yielded the ycdW gene as a good candidate to encode glyoxylate reductase in this bacterium. Cloning and overexpression of the ycdW gene showed that its product displayed a high NADPH-linked glyoxylate reductase activity, and also catalysed the reduction of hydroxypyruvate with a lower efficiency. Disruption of the ycdW gene by a chloramphenicol acetyltransferase ('CAT') cassette did not totally abolish the glyoxylate reductase activity, indicating that another enzyme accomplished this function. The similarity with YiaE led us to test whether this protein was responsible for the remaining glyoxylate reductase activity. Purification of YcdW and YiaE proteins permitted their kinetic characterization and comparison. Analysis of the catalytic power (k(cat)/K(m)) disclosed a higher ratio of YcdW for glyoxylate and of YiaE for hydroxypyruvate.
Full Text
The Full Text of this article is available as a PDF (236.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashiuchi M., Misono H. Biochemical evidence that Escherichia coli hyi (orf b0508, gip) gene encodes hydroxypyruvate isomerase. Biochim Biophys Acta. 1999 Nov 16;1435(1-2):153–159. doi: 10.1016/s0167-4838(99)00216-2. [DOI] [PubMed] [Google Scholar]
- Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
- Boronat A., Aguilar J. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme. J Bacteriol. 1979 Nov;140(2):320–326. doi: 10.1128/jb.140.2.320-326.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadaban M. J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol. 1976 Jul 5;104(3):541–555. doi: 10.1016/0022-2836(76)90119-4. [DOI] [PubMed] [Google Scholar]
- Chistoserdova L. V., Lidstrom M. E. Cloning, mutagenesis, and physiological effect of a hydroxypyruvate reductase gene from Methylobacterium extorquens AM1. J Bacteriol. 1992 Jan;174(1):71–77. doi: 10.1128/jb.174.1.71-77.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chistoserdova L. V., Lidstrom M. E. Purification and characterization of hydroxypyruvate reductase from the facultative methylotroph Methylobacterium extorquens AM1. J Bacteriol. 1991 Nov;173(22):7228–7232. doi: 10.1128/jb.173.22.7228-7232.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cusa E., Obradors N., Baldomà L., Badía J., Aguilar J. Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J Bacteriol. 1999 Dec;181(24):7479–7484. doi: 10.1128/jb.181.24.7479-7484.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunstan P. M., Anthony C., Drabble W. T. Microbial metabolism of C 1 and C 2 compounds. The involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1. Biochem J. 1972 Jun;128(1):99–106. doi: 10.1042/bj1280099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott T. A method for constructing single-copy lac fusions in Salmonella typhimurium and its application to the hemA-prfA operon. J Bacteriol. 1992 Jan;174(1):245–253. doi: 10.1128/jb.174.1.245-253.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda H., Moriguchi M., Tochikura T. Purification and enzymatic properties of glyoxylate reductase II from baker's yeast. J Biochem. 1980 Mar;87(3):841–846. doi: 10.1093/oxfordjournals.jbchem.a132814. [DOI] [PubMed] [Google Scholar]
- Fuqua W. C. An improved chloramphenicol resistance gene cassette for site-directed marker replacement mutagenesis. Biotechniques. 1992 Feb;12(2):223–225. [PubMed] [Google Scholar]
- Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
- Hullin R. P. Glyoxylate reductase, two forms from Pseudomonas. Methods Enzymol. 1975;41:343–348. doi: 10.1016/s0076-6879(75)41077-1. [DOI] [PubMed] [Google Scholar]
- Kleczkowski L. A., Randall D. D., Blevins D. G. Purification and characterization of a novel NADPH(NADH)-dependent glyoxylate reductase from spinach leaves. Comparison of immunological properties of leaf glyoxylate reductase and hydroxypyruvate reductase. Biochem J. 1986 Nov 1;239(3):653–659. doi: 10.1042/bj2390653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleczkowski L. A., Randall D. D. Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves. Comparison of immunological properties of leaf hydroxypyruvate reductases. Biochem J. 1988 Feb 15;250(1):145–152. doi: 10.1042/bj2500145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mano S., Hayashi M., Kondo M., Nishimura M. Hydroxypyruvate reductase with a carboxy-terminal targeting signal to microbodies is expressed in Arabidopsis. Plant Cell Physiol. 1997 Apr;38(4):449–455. doi: 10.1093/oxfordjournals.pcp.a029188. [DOI] [PubMed] [Google Scholar]
- Ornston L. N., Ornston M. K. Regulation of glyoxylate metabolism in Escherichia coli K-12. J Bacteriol. 1969 Jun;98(3):1098–1108. doi: 10.1128/jb.98.3.1098-1108.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pellicer M. T., Badía J., Aguilar J., Baldomà L. glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol. 1996 Apr;178(7):2051–2059. doi: 10.1128/jb.178.7.2051-2059.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pellicer M. T., Fernandez C., Badía J., Aguilar J., Lin E. C., Baldom L. Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem. 1999 Jan 15;274(3):1745–1752. doi: 10.1074/jbc.274.3.1745. [DOI] [PubMed] [Google Scholar]
- Rumsby G., Cregeen D. P. Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase. Biochim Biophys Acta. 1999 Sep 3;1446(3):383–388. doi: 10.1016/s0167-4781(99)00105-0. [DOI] [PubMed] [Google Scholar]
- Schwartz B. W., Sloan J. S., Becker W. M. Characterization of genes encoding hydroxypyruvate reductase in cucumber. Plant Mol Biol. 1991 Oct;17(4):941–947. doi: 10.1007/BF00037078. [DOI] [PubMed] [Google Scholar]
- Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
- Slabas A. R., Whatley F. R. Metabolic regulation of malic enzyme activity from Paracoccus denitrificans by glyoxylate and acetylCoA. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1116–1124. doi: 10.1016/0006-291x(77)91634-5. [DOI] [PubMed] [Google Scholar]
- Tochikura T., Fukuda H., Moriguchi M. Purification and properties of glyoxylate reductase I from baker's yeast. J Biochem. 1979 Jul;86(1):105–110. [PubMed] [Google Scholar]
- Tolbert N. E., Yamazaki R. K., Oeser A. Localization and properties of hydroxypyruvate and glyoxylate reductases in spinach leaf particles. J Biol Chem. 1970 Oct 10;245(19):5129–5136. [PubMed] [Google Scholar]
- Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wackernagel W. Genetic transformation in E. coli: the inhibitory role of the recBC DNase. Biochem Biophys Res Commun. 1973 Mar 17;51(2):306–311. doi: 10.1016/0006-291x(73)91257-6. [DOI] [PubMed] [Google Scholar]
- Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokota A., Kitaoka S. Occurrence and operation of the glycollate--glyoxylate shuttle in mitochondria of Euglena gracilis Z. Biochem J. 1979 Oct 15;184(1):189–192. doi: 10.1042/bj1840189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yum D. Y., Lee B. Y., Hahm D. H., Pan J. G. The yiaE gene, located at 80.1 minutes on the Escherichia coli chromosome, encodes a 2-ketoaldonate reductase. J Bacteriol. 1998 Nov;180(22):5984–5988. doi: 10.1128/jb.180.22.5984-5988.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]