Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 1;355(Pt 1):13–18. doi: 10.1042/0264-6021:3550013

Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition.

F X Liang 1, I Riedel 1, F M Deng 1, G Zhou 1, C Xu 1, X R Wu 1, X P Kong 1, R Moll 1, T T Sun 1
PMCID: PMC1221706  PMID: 11256943

Abstract

The apical surfaces of urothelial cells are almost entirely covered with plaques consisting of crystalline, hexagonal arrays of 16 nm uroplakin particles. Although all four uroplakins, when SDS-denatured, can be digested by chymotrypsin, most uroplakin domains in native urothelial plaques are resistant to the enzyme, suggesting a tightly packed structure. The only exception is the C-terminal, cytoplasmic tail of UPIII (UPIII) which is highly susceptible to proteolysis, suggesting a loose configuration. When uroplakins are solubilized with 2% octylglucoside and fractionated with ion exchangers, UPIa and UPII were bound as a complex by a cation exchanger, whereas UPIb and UPIII were bound by an anion exchanger. This result is consistent with the fact that UPIa and UPIb are cross-linked to UPII and UPIII, respectively, and suggests that the four uroplakins form two pairs consisting of UPIa/II and UPIb/III. Immunogold labelling using a new mouse monoclonal antibody, AU1, revealed that UPIII is present in all urothelial plaques, indicating that the two uroplakin pairs are not segregated into two different types of urothelial plaque and that all plaques must have a similar uroplakin composition. Taken together, these results indicate that uroplakins form a tightly packed structure, that the four uroplakins interact specifically forming two pairs, and that both uroplakin pairs are required for normal urothelial plaque formation.

Full Text

The Full Text of this article is available as a PDF (276.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy J., Weinstein R. S. Intraepithelial asymmetric-unit-membrane plaques in mammalian urinary bladder. Anat Rec. 1980 May;197(1):75–83. doi: 10.1002/ar.1091970107. [DOI] [PubMed] [Google Scholar]
  2. Brisson A., Wade R. H. Three-dimensional structure of luminal plasma membrane protein from urinary bladder. J Mol Biol. 1983 May 5;166(1):21–36. doi: 10.1016/s0022-2836(83)80048-5. [DOI] [PubMed] [Google Scholar]
  3. Chang A., Hammond T. G., Sun T. T., Zeidel M. L. Permeability properties of the mammalian bladder apical membrane. Am J Physiol. 1994 Nov;267(5 Pt 1):C1483–C1492. doi: 10.1152/ajpcell.1994.267.5.C1483. [DOI] [PubMed] [Google Scholar]
  4. Eichner R., Bonitz P., Sun T. T. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol. 1984 Apr;98(4):1388–1396. doi: 10.1083/jcb.98.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hicks R. M., Ketterer B. Hexagonal lattice of subunits in the thick luminal membrane of the rat urinary bladder. Nature. 1969 Dec 27;224(5226):1304–1305. doi: 10.1038/2241304a0. [DOI] [PubMed] [Google Scholar]
  6. Hicks R. M. The fine structure of the transitional epithelium of rat ureter. J Cell Biol. 1965 Jul;26(1):25–48. doi: 10.1083/jcb.26.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hicks R. M. The mammalian urinary bladder: an accommodating organ. Biol Rev Camb Philos Soc. 1975 May;50(2):215–246. doi: 10.1111/j.1469-185x.1975.tb01057.x. [DOI] [PubMed] [Google Scholar]
  8. Hu P., Deng F. M., Liang F. X., Hu C. M., Auerbach A. B., Shapiro E., Wu X. R., Kachar B., Sun T. T. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol. 2000 Nov 27;151(5):961–972. doi: 10.1083/jcb.151.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kachar B., Liang F., Lins U., Ding M., Wu X. R., Stoffler D., Aebi U., Sun T. T. Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. J Mol Biol. 1999 Jan 15;285(2):595–608. doi: 10.1006/jmbi.1998.2304. [DOI] [PubMed] [Google Scholar]
  10. Kerr D. E., Liang F., Bondioli K. R., Zhao H., Kreibich G., Wall R. J., Sun T. T. The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nat Biotechnol. 1998 Jan;16(1):75–79. doi: 10.1038/nbt0198-75. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lewis S. A., de Moura J. L. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature. 1982 Jun 24;297(5868):685–688. doi: 10.1038/297685a0. [DOI] [PubMed] [Google Scholar]
  13. Liang F., Kachar B., Ding M., Zhai Z., Wu X. R., Sun T. T. Urothelial hinge as a highly specialized membrane: detergent-insolubility, urohingin association, and in vitro formation. Differentiation. 1999 Jul;65(1):59–69. doi: 10.1046/j.1432-0436.1999.6510059.x. [DOI] [PubMed] [Google Scholar]
  14. Lin J. H., Wu X. R., Kreibich G., Sun T. T. Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. J Biol Chem. 1994 Jan 21;269(3):1775–1784. [PubMed] [Google Scholar]
  15. Minsky B. D., Chlapowski F. J. Morphometric analysis of the translocation of lumenal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder. J Cell Biol. 1978 Jun;77(3):685–697. doi: 10.1083/jcb.77.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sarikas S. N., Chlapowski F. J. Effect of ATP inhibitors on the translocation of luminal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycle of the rat urinary bladder. Cell Tissue Res. 1986;246(1):109–117. doi: 10.1007/BF00219006. [DOI] [PubMed] [Google Scholar]
  17. Severs N. J., Hicks R. M. Analysis of membrane structure in the transitional epithelium of rat urinary bladder. 2. The discoidal vesicles and Golgi apparatus: their role in luminal membrane biogenesis. J Ultrastruct Res. 1979 Nov;69(2):279–296. doi: 10.1016/s0022-5320(79)90117-5. [DOI] [PubMed] [Google Scholar]
  18. Staehelin L. A., Chlapowski F. J., Bonneville M. A. Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol. 1972 Apr;53(1):73–91. doi: 10.1083/jcb.53.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sun T. T., Zhao H., Provet J., Aebi U., Wu X. R. Formation of asymmetric unit membrane during urothelial differentiation. Mol Biol Rep. 1996;23(1):3–11. doi: 10.1007/BF00357068. [DOI] [PubMed] [Google Scholar]
  20. Taylor K. A., Robertson J. D. Analysis of the three-dimensional structure of the urinary bladder epithelial cell membranes. J Ultrastruct Res. 1984 Apr;87(1):23–30. doi: 10.1016/s0022-5320(84)90113-8. [DOI] [PubMed] [Google Scholar]
  21. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tseng S. C., Jarvinen M. J., Nelson W. G., Huang J. W., Woodcock-Mitchell J., Sun T. T. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell. 1982 Sep;30(2):361–372. doi: 10.1016/0092-8674(82)90234-3. [DOI] [PubMed] [Google Scholar]
  23. Vergara J., Longley W., Robertson J. D. A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol. 1969 Dec 28;46(3):593–596. doi: 10.1016/0022-2836(69)90200-9. [DOI] [PubMed] [Google Scholar]
  24. Walz T., Häner M., Wu X. R., Henn C., Engel A., Sun T. T., Aebi U. Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed "twisted ribbon" structure. J Mol Biol. 1995 May 19;248(5):887–900. doi: 10.1006/jmbi.1995.0269. [DOI] [PubMed] [Google Scholar]
  25. Woodcock-Mitchell J., Eichner R., Nelson W. G., Sun T. T. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):580–588. doi: 10.1083/jcb.95.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu R. L., Osman I., Wu X. R., Lu M. L., Zhang Z. F., Liang F. X., Hamza R., Scher H., Cordon-Cardo C., Sun T. T. Uroplakin II gene is expressed in transitional cell carcinoma but not in bilharzial bladder squamous cell carcinoma: alternative pathways of bladder epithelial differentiation and tumor formation. Cancer Res. 1998 Mar 15;58(6):1291–1297. [PubMed] [Google Scholar]
  27. Wu X. R., Lin J. H., Walz T., Häner M., Yu J., Aebi U., Sun T. T. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. J Biol Chem. 1994 May 6;269(18):13716–13724. [PubMed] [Google Scholar]
  28. Wu X. R., Manabe M., Yu J., Sun T. T. Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. J Biol Chem. 1990 Nov 5;265(31):19170–19179. [PubMed] [Google Scholar]
  29. Wu X. R., Medina J. J., Sun T. T. Selective interactions of UPIa and UPIb, two members of the transmembrane 4 superfamily, with distinct single transmembrane-domained proteins in differentiated urothelial cells. J Biol Chem. 1995 Dec 15;270(50):29752–29759. doi: 10.1074/jbc.270.50.29752. [DOI] [PubMed] [Google Scholar]
  30. Wu X. R., Sun T. T. Molecular cloning of a 47 kDa tissue-specific and differentiation-dependent urothelial cell surface glycoprotein. J Cell Sci. 1993 Sep;106(Pt 1):31–43. doi: 10.1242/jcs.106.1.31. [DOI] [PubMed] [Google Scholar]
  31. Yu J., Lin J. H., Wu X. R., Sun T. T. Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol. 1994 Apr;125(1):171–182. doi: 10.1083/jcb.125.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yu J., Manabe M., Wu X. R., Xu C., Surya B., Sun T. T. Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. J Cell Biol. 1990 Sep;111(3):1207–1216. doi: 10.1083/jcb.111.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES