Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 1;355(Pt 1):59–69. doi: 10.1042/0264-6021:3550059

Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor.

E P Nerou 1, A M Riley 1, B V Potter 1, C W Taylor 1
PMCID: PMC1221712  PMID: 11256949

Abstract

Synthetic analogues of inositol trisphosphate (IP(3)), all of which included structures equivalent to the 4,5-bisphosphate of (1,4,5)IP(3), were used to probe the recognition properties of rat full-length type 1, 2 and 3 IP(3) receptors expressed in insect Spodoptera frugiperda 9 cells. Using equilibrium competition binding with [(3)H](1,4,5)IP(3) in Ca(2+)-free cytosol-like medium, the relative affinities of the receptor subtypes for (1,4,5)IP(3) were type 3 (K(d)=11+/-2 nM)>type 2 (K(d)=17+/-2 nM)>type 1 (K(d)=24+/-4 nM). (1,4,5)IP(3) binding was reversibly stimulated by increased pH, but the subtypes differed in their sensitivity to pH (type 1>type 2>type 3). For all three subtypes, the equatorial 6-hydroxy group of (1,4,5)IP(3) was essential for high-affinity binding, the equatorial 3-hydroxy group significantly improved affinity, and the axial 2-hydroxy group was insignificant; a 1-phosphate (or in its absence, a 2-phosphate) improved binding affinity. The subtypes differed in the extents to which they tolerated inversion of the 3-hydroxy group of (1,4,5)IP(3) (type 1>type 2>type 3), and this probably accounts for the selectivity of (1,4,6)IP(3) for type 1 receptors. They also differed in their tolerance of inversion, removal or substitution (by phosphate) of the 2-hydroxy group (types 2 and 3>type 1), hence the selectivity of (1,2,4,5)IP(4) for type 2 and 3 receptors. Removal of the 3-hydroxy group or its replacement by fluorine or CH(2)OH was best tolerated by type 3 receptors, and accounts for the selectivity of 3-deoxy(1,4,5)IP(3) for type 3 receptors. Our results provide the first systematic analysis of the recognition properties of IP(3) receptor subtypes and have identified the 2- and 3-positions of (1,4,5)IP(3) as key determinants of subtype selectivity.

Full Text

The Full Text of this article is available as a PDF (247.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blondel O., Takeda J., Janssen H., Seino S., Bell G. I. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem. 1993 May 25;268(15):11356–11363. [PubMed] [Google Scholar]
  2. Boulay G., Brown D. M., Qin N., Jiang M., Dietrich A., Zhu M. X., Chen Z., Birnbaumer M., Mikoshiba K., Birnbaumer L. Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14955–14960. doi: 10.1073/pnas.96.26.14955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cardy T. J., Taylor C. W. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J. 1998 Sep 1;334(Pt 2):447–455. doi: 10.1042/bj3340447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cardy T. J., Traynor D., Taylor C. W. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem J. 1997 Dec 15;328(Pt 3):785–793. doi: 10.1042/bj3280785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Smet P., Parys J. B., Vanlingen S., Bultynck G., Callewaert G., Galione A., De Smedt H., Missiaen L. The relative order of IP3 sensitivity of types 1 and 3 IP3 receptors is pH dependent. Pflugers Arch. 1999 Jul;438(2):154–158. doi: 10.1007/s004240050893. [DOI] [PubMed] [Google Scholar]
  6. DeLisle S., Blondel O., Longo F. J., Schnabel W. E., Bell G. I., Welsh M. J. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes. Am J Physiol. 1996 Apr;270(4 Pt 1):C1255–C1261. doi: 10.1152/ajpcell.1996.270.4.C1255. [DOI] [PubMed] [Google Scholar]
  7. DeLisle S., Radenberg T., Wintermantel M. R., Tietz C., Parys J. B., Pittet D., Welsh M. J., Mayr G. W. Second messenger specificity of the inositol trisphosphate receptor: reappraisal based on novel inositol phosphates. Am J Physiol. 1994 Feb;266(2 Pt 1):C429–C436. doi: 10.1152/ajpcell.1994.266.2.C429. [DOI] [PubMed] [Google Scholar]
  8. Hagar R. E., Burgstahler A. D., Nathanson M. H., Ehrlich B. E. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. 1998 Nov 5;396(6706):81–84. doi: 10.1038/23954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirata M., Takeuchi H., Riley A. M., Mills S. J., Watanabe Y., Potter B. V. Inositol 1,4,5-trisphosphate receptor subtypes differentially recognize regioisomers of D-myo-inositol 1,4,5-trisphosphate. Biochem J. 1997 Nov 15;328(Pt 1):93–98. doi: 10.1042/bj3280093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirata M., Watanabe Y., Ishimatsu T., Ikebe T., Kimura Y., Yamaguchi K., Ozaki S., Koga T. Synthetic inositol trisphosphate analogs and their effects on phosphatase, kinase, and the release of Ca2+. J Biol Chem. 1989 Dec 5;264(34):20303–20308. [PubMed] [Google Scholar]
  11. Hirata M., Watanabe Y., Yoshida M., Koga T., Ozaki S. Roles for hydroxyl groups of D-myo-inositol 1,4,5-trisphosphate in the recognition by its receptor and metabolic enzymes. J Biol Chem. 1993 Sep 15;268(26):19260–19266. [PubMed] [Google Scholar]
  12. Hirata M., Yanaga F., Koga T., Ogasawara T., Watanabe Y., Ozaki S. Stereospecific recognition of inositol 1,4,5-trisphosphate analogs by the phosphatase, kinase, and binding proteins. J Biol Chem. 1990 May 25;265(15):8404–8407. [PubMed] [Google Scholar]
  13. Inoue T., Kato K., Kohda K., Mikoshiba K. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci. 1998 Jul 15;18(14):5366–5373. doi: 10.1523/JNEUROSCI.18-14-05366.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khan A. A., Soloski M. J., Sharp A. H., Schilling G., Sabatini D. M., Li S. H., Ross C. A., Snyder S. H. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science. 1996 Jul 26;273(5274):503–507. doi: 10.1126/science.273.5274.503. [DOI] [PubMed] [Google Scholar]
  15. Lu P. J., Gou D. M., Shieh W. R., Chen C. S. Molecular interactions of endogenous D-myo-inositol phosphates with the intracellular D-myo-inositol 1,4,5-trisphosphate recognition site. Biochemistry. 1994 Sep 27;33(38):11586–11597. doi: 10.1021/bi00204a021. [DOI] [PubMed] [Google Scholar]
  16. Marchant J. S., Beecroft M. D., Riley A. M., Jenkins D. J., Marwood R. D., Taylor C. W., Potter B. V. Disaccharide polyphosphates based upon adenophostin A activate hepatic D-myo-inositol 1,4,5-trisphosphate receptors. Biochemistry. 1997 Oct 21;36(42):12780–12790. doi: 10.1021/bi971397v. [DOI] [PubMed] [Google Scholar]
  17. Mignery G. A., Newton C. L., Archer B. T., 3rd, Südhof T. C. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Jul 25;265(21):12679–12685. [PubMed] [Google Scholar]
  18. Mills Stephen J., Potter Barry V. L. Synthesis of D- and L-myo-Inositol 1,4,6-Trisphosphate, Regioisomers of a Ubiquitous Second Messenger. J Org Chem. 1996 Dec 13;61(25):8980–8987. doi: 10.1021/jo961280x. [DOI] [PubMed] [Google Scholar]
  19. Miyakawa T., Maeda A., Yamazawa T., Hirose K., Kurosaki T., Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 1999 Mar 1;18(5):1303–1308. doi: 10.1093/emboj/18.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
  21. Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
  22. Polokoff M. A., Bencen G. H., Vacca J. P., deSolms S. J., Young S. D., Huff J. R. Metabolism of synthetic inositol trisphosphate analogs. J Biol Chem. 1988 Aug 25;263(24):11922–11927. [PubMed] [Google Scholar]
  23. Riley A. M., Payne R., Potter B. V. Unambiguous total synthesis of the enantiomers of myo-inositol 1,3,4-trisphosphate: 1L-myo-inositol 1,3,4-trisphosphate mobilizes intracellular Ca2+ in Limulus photoreceptors. J Med Chem. 1994 Nov 11;37(23):3918–3927. doi: 10.1021/jm00049a011. [DOI] [PubMed] [Google Scholar]
  24. Safrany S. T., Wilcox R. A., Liu C., Potter B. V., Nahorski S. R. 3-position modification of myo-inositol 1,4,5-trisphosphate: consequences for intracellular Ca2+ mobilisation and enzyme recognition. Eur J Pharmacol. 1992 Jul 1;226(3):265–272. doi: 10.1016/0922-4106(92)90071-3. [DOI] [PubMed] [Google Scholar]
  25. Safrany S. T., Wojcikiewicz R. J., Strupish J., Nahorski S. R., Dubreuil D., Cleophax J., Gero S. D., Potter B. V. Interaction of synthetic D-6-deoxy-myo-inositol 1,4,5-trisphosphate with the Ca2(+)-releasing D-myo-inositol 1,4,5-trisphosphate receptor, and the metabolic enzymes 5-phosphatase and 3-kinase. FEBS Lett. 1991 Jan 28;278(2):252–256. doi: 10.1016/0014-5793(91)80128-p. [DOI] [PubMed] [Google Scholar]
  26. Sugawara H., Kurosaki M., Takata M., Kurosaki T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 1997 Jun 2;16(11):3078–3088. doi: 10.1093/emboj/16.11.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Swatton J. E., Morris S. A., Cardy T. J., Taylor C. W. Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. Biochem J. 1999 Nov 15;344(Pt 1):55–60. [PMC free article] [PubMed] [Google Scholar]
  28. Südhof T. C., Newton C. L., Archer B. T., 3rd, Ushkaryov Y. A., Mignery G. A. Structure of a novel InsP3 receptor. EMBO J. 1991 Nov;10(11):3199–3206. doi: 10.1002/j.1460-2075.1991.tb04882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor C. W., Genazzani A. A., Morris S. A. Expression of inositol trisphosphate receptors. Cell Calcium. 1999 Dec;26(6):237–251. doi: 10.1054/ceca.1999.0090. [DOI] [PubMed] [Google Scholar]
  30. Vanlingen S., Sipma H., De Smet P., Callewaert G., Missiaen L., De Smedt H., Parys J. B. Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J. 2000 Mar 1;346(Pt 2):275–280. [PMC free article] [PubMed] [Google Scholar]
  31. Vanlingen S., Sipma H., Missiaen L., De Smedt H., De Smet P., Casteels R., Parys J. B. Modulation of type 1, 2 and 3 inositol 1,4,5-trisphosphate receptors by cyclic ADP-ribose and thimerosal. Cell Calcium. 1999 Feb;25(2):107–114. doi: 10.1054/ceca.1998.0010. [DOI] [PubMed] [Google Scholar]
  32. Varney M. A., Rivera J., Lopez Bernal A., Watson S. P. Are there subtypes of the inositol 1,4,5-trisphosphate receptor? Biochem J. 1990 Jul 1;269(1):211–216. doi: 10.1042/bj2690211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wilcox R. A., Challiss R. A., Traynor J. R., Fauq A. H., Ognayanov V. I., Kozikowski A. P., Nahorski S. R. Molecular recognition at the myo-inositol 1,4,5-trisphosphate receptor. 3-position substituted myo-inositol 1,4,5-trisphosphate analogues reveal the binding and Ca2+ release requirements for high affinity interaction with the myo-inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Oct 28;269(43):26815–26821. [PubMed] [Google Scholar]
  34. Wilcox R. A., Primrose W. U., Nahorski S. R., Challiss R. A. New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci. 1998 Nov;19(11):467–475. doi: 10.1016/s0165-6147(98)01260-7. [DOI] [PubMed] [Google Scholar]
  35. Wilcox R. A., Safrany S. T., Lampe D., Mills S. J., Nahorski S. R., Potter B. V. Modification at C2 of myo-inositol 1,4,5-trisphosphate produces inositol trisphosphates and tetrakisphosphates with potent biological activities. Eur J Biochem. 1994 Jul 1;223(1):115–124. doi: 10.1111/j.1432-1033.1994.tb18972.x. [DOI] [PubMed] [Google Scholar]
  36. Wojcikiewicz R. J., Luo S. G. Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Mol Pharmacol. 1998 Apr;53(4):656–662. doi: 10.1124/mol.53.4.656. [DOI] [PubMed] [Google Scholar]
  37. Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
  38. Yoneshima H., Miyawaki A., Michikawa T., Furuichi T., Mikoshiba K. Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors. Biochem J. 1997 Mar 1;322(Pt 2):591–596. doi: 10.1042/bj3220591. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES