Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 1;355(Pt 1):87–95. doi: 10.1042/0264-6021:3550087

Nitric oxide and cGMP activate Ca2+-release processes in rat parotid acinar cells.

D K Looms 1, K Tritsaris 1, B Nauntofte 1, S Dissing 1
PMCID: PMC1221715  PMID: 11256952

Abstract

We characterized the enzymic properties of ADP-ribosyl cyclase in rat parotid acinar cells by using a fluorescence technique. ADP-ribosyl cyclase is capable of synthesizing the Ca2+ -mobilizing nucleotide cADP-ribose (cADPR) from NAD(+) and has previously been shown to be regulated by cGMP via a cGMP-dependent protein kinase (G kinase). We therefore investigated whether NO/cGMP-activated pathways are present in rat parotid acinar cells and whether NO/cGMP signalling exerts control over cellular Ca2+ signalling processes. Our results showed that stimulation of acinar cells with adrenaline, isoproterenol, substance P and NO resulted in a rise in the [cGMP]. In addition, NO induced a release of Ca2+ from intracellular ryanodine-sensitive stores via a cGMP/G-kinase-mediated process. Thus our data reveal that a rise in [cGMP], caused by either neurotransmitter or NO activation, activates a G kinase, which in turn controls Ca2+ release from ryanodine-sensitive stores. Since parotid acinar cells possess ADP-ribosyl cyclase activity, we propose a model in which cADPR is the link between NO/cGMP signalling pathways and release of Ca2+ from ryanodine-sensitive stores.

Full Text

The Full Text of this article is available as a PDF (174.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alm P., Ekström J., Larsson B., Tobin G., Andersson K. E. Nitric oxide synthase immunoreactive nerves in rat and ferret salivary glands, and effects of denervation. Histochem J. 1997 Sep;29(9):669–676. doi: 10.1023/a:1026452715555. [DOI] [PubMed] [Google Scholar]
  2. Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
  3. De Flora A., Guida L., Franco L., Zocchi E., Bruzzone S., Benatti U., Damonte G., Lee H. C. CD38 and ADP-ribosyl cyclase catalyze the synthesis of a dimeric ADP-ribose that potentiates the calcium-mobilizing activity of cyclic ADP-ribose. J Biol Chem. 1997 May 16;272(20):12945–12951. doi: 10.1074/jbc.272.20.12945. [DOI] [PubMed] [Google Scholar]
  4. Dissing S., Nauntofte B., Sten-Knudsen O. Spatial distribution of intracellular, free Ca2+ in isolated rat parotid acini. Pflugers Arch. 1990 Sep;417(1):1–12. doi: 10.1007/BF00370762. [DOI] [PubMed] [Google Scholar]
  5. Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  6. Garthwaite J., Southam E., Boulton C. L., Nielsen E. B., Schmidt K., Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995 Aug;48(2):184–188. [PubMed] [Google Scholar]
  7. Genazzani A. A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci. 1997 Apr;18(4):108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
  8. Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
  9. Gromada J., Jørgensen T. D., Dissing S. The release of intracellular Ca2+ in lacrimal acinar cells by alpha-, beta-adrenergic and muscarinic cholinergic stimulation: the roles of inositol triphosphate and cyclic ADP-ribose. Pflugers Arch. 1995 Apr;429(6):751–761. doi: 10.1007/BF00374798. [DOI] [PubMed] [Google Scholar]
  10. Lee H. C., Aarhus R., Graeff R. M. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem. 1995 Apr 21;270(16):9060–9066. doi: 10.1074/jbc.270.16.9060. [DOI] [PubMed] [Google Scholar]
  11. Lee H. C. Modulator and messenger functions of cyclic ADP-ribose in calcium signaling. Recent Prog Horm Res. 1996;51:355–389. [PubMed] [Google Scholar]
  12. Looms D., Nauntofte B., Dissing S. ADP ribosyl cyclase activity in rat parotid acinar cells. Eur J Morphol. 1998 Aug;36 (Suppl):181–185. [PubMed] [Google Scholar]
  13. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  14. Ozawa T., Nishiyama A. Characterization of ryanodine-sensitive Ca2+ release from microsomal vesicles of rat parotid acinar cells: regulation by cyclic ADP-ribose. J Membr Biol. 1997 Apr 1;156(3):231–239. doi: 10.1007/s002329900203. [DOI] [PubMed] [Google Scholar]
  15. Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
  16. Stoyanovsky D., Murphy T., Anno P. R., Kim Y. M., Salama G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium. 1997 Jan;21(1):19–29. doi: 10.1016/s0143-4160(97)90093-2. [DOI] [PubMed] [Google Scholar]
  17. Sugiya H., Michikawa H., Mitsui Y., Fujita-Yoshigaki J., Hara-Yokoyama M., Furuyama S. Ca2+-nitric oxide-cGMP signaling in rabbit parotid acinar cells. Eur J Morphol. 1998 Aug;36 (Suppl):194–197. [PubMed] [Google Scholar]
  18. Tritsaris K., Looms D. K., Nauntofte B., Dissing S. Nitric oxide synthesis causes inositol phosphate production and Ca2+ release in rat parotid acinar cells. Pflugers Arch. 2000 Jun;440(2):223–228. doi: 10.1007/s004240000286. [DOI] [PubMed] [Google Scholar]
  19. White B. H., Klein D. C. Stimulation of cyclic GMP accumulation by sodium nitroprusside is potentiated via a Gs mechanism in intact pinealocytes. J Neurochem. 1995 Feb;64(2):711–717. doi: 10.1046/j.1471-4159.1995.64020711.x. [DOI] [PubMed] [Google Scholar]
  20. Willmott N., Sethi J. K., Walseth T. F., Lee H. C., White A. M., Galione A. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem. 1996 Feb 16;271(7):3699–3705. doi: 10.1074/jbc.271.7.3699. [DOI] [PubMed] [Google Scholar]
  21. Wink D. A., Cook J. A., Pacelli R., DeGraff W., Gamson J., Liebmann J., Krishna M. C., Mitchell J. B. The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: a direct correlation between nitric oxide formation and protection. Arch Biochem Biophys. 1996 Jul 15;331(2):241–248. doi: 10.1006/abbi.1996.0304. [DOI] [PubMed] [Google Scholar]
  22. Xu X., Zeng W., Diaz J., Lau K. S., Gukovskaya A. C., Brown R. J., Pandol S. J., Muallem S. nNOS and Ca2+ influx in rat pancreatic acinar and submandibular salivary gland cells. Cell Calcium. 1997 Sep;22(3):217–228. doi: 10.1016/s0143-4160(97)90015-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES