Abstract
We characterized the enzymic properties of ADP-ribosyl cyclase in rat parotid acinar cells by using a fluorescence technique. ADP-ribosyl cyclase is capable of synthesizing the Ca2+ -mobilizing nucleotide cADP-ribose (cADPR) from NAD(+) and has previously been shown to be regulated by cGMP via a cGMP-dependent protein kinase (G kinase). We therefore investigated whether NO/cGMP-activated pathways are present in rat parotid acinar cells and whether NO/cGMP signalling exerts control over cellular Ca2+ signalling processes. Our results showed that stimulation of acinar cells with adrenaline, isoproterenol, substance P and NO resulted in a rise in the [cGMP]. In addition, NO induced a release of Ca2+ from intracellular ryanodine-sensitive stores via a cGMP/G-kinase-mediated process. Thus our data reveal that a rise in [cGMP], caused by either neurotransmitter or NO activation, activates a G kinase, which in turn controls Ca2+ release from ryanodine-sensitive stores. Since parotid acinar cells possess ADP-ribosyl cyclase activity, we propose a model in which cADPR is the link between NO/cGMP signalling pathways and release of Ca2+ from ryanodine-sensitive stores.
Full Text
The Full Text of this article is available as a PDF (174.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm P., Ekström J., Larsson B., Tobin G., Andersson K. E. Nitric oxide synthase immunoreactive nerves in rat and ferret salivary glands, and effects of denervation. Histochem J. 1997 Sep;29(9):669–676. doi: 10.1023/a:1026452715555. [DOI] [PubMed] [Google Scholar]
- Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
- De Flora A., Guida L., Franco L., Zocchi E., Bruzzone S., Benatti U., Damonte G., Lee H. C. CD38 and ADP-ribosyl cyclase catalyze the synthesis of a dimeric ADP-ribose that potentiates the calcium-mobilizing activity of cyclic ADP-ribose. J Biol Chem. 1997 May 16;272(20):12945–12951. doi: 10.1074/jbc.272.20.12945. [DOI] [PubMed] [Google Scholar]
- Dissing S., Nauntofte B., Sten-Knudsen O. Spatial distribution of intracellular, free Ca2+ in isolated rat parotid acini. Pflugers Arch. 1990 Sep;417(1):1–12. doi: 10.1007/BF00370762. [DOI] [PubMed] [Google Scholar]
- Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
- Garthwaite J., Southam E., Boulton C. L., Nielsen E. B., Schmidt K., Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995 Aug;48(2):184–188. [PubMed] [Google Scholar]
- Genazzani A. A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci. 1997 Apr;18(4):108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
- Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
- Gromada J., Jørgensen T. D., Dissing S. The release of intracellular Ca2+ in lacrimal acinar cells by alpha-, beta-adrenergic and muscarinic cholinergic stimulation: the roles of inositol triphosphate and cyclic ADP-ribose. Pflugers Arch. 1995 Apr;429(6):751–761. doi: 10.1007/BF00374798. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R., Graeff R. M. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem. 1995 Apr 21;270(16):9060–9066. doi: 10.1074/jbc.270.16.9060. [DOI] [PubMed] [Google Scholar]
- Lee H. C. Modulator and messenger functions of cyclic ADP-ribose in calcium signaling. Recent Prog Horm Res. 1996;51:355–389. [PubMed] [Google Scholar]
- Looms D., Nauntofte B., Dissing S. ADP ribosyl cyclase activity in rat parotid acinar cells. Eur J Morphol. 1998 Aug;36 (Suppl):181–185. [PubMed] [Google Scholar]
- Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
- Ozawa T., Nishiyama A. Characterization of ryanodine-sensitive Ca2+ release from microsomal vesicles of rat parotid acinar cells: regulation by cyclic ADP-ribose. J Membr Biol. 1997 Apr 1;156(3):231–239. doi: 10.1007/s002329900203. [DOI] [PubMed] [Google Scholar]
- Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
- Stoyanovsky D., Murphy T., Anno P. R., Kim Y. M., Salama G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium. 1997 Jan;21(1):19–29. doi: 10.1016/s0143-4160(97)90093-2. [DOI] [PubMed] [Google Scholar]
- Sugiya H., Michikawa H., Mitsui Y., Fujita-Yoshigaki J., Hara-Yokoyama M., Furuyama S. Ca2+-nitric oxide-cGMP signaling in rabbit parotid acinar cells. Eur J Morphol. 1998 Aug;36 (Suppl):194–197. [PubMed] [Google Scholar]
- Tritsaris K., Looms D. K., Nauntofte B., Dissing S. Nitric oxide synthesis causes inositol phosphate production and Ca2+ release in rat parotid acinar cells. Pflugers Arch. 2000 Jun;440(2):223–228. doi: 10.1007/s004240000286. [DOI] [PubMed] [Google Scholar]
- White B. H., Klein D. C. Stimulation of cyclic GMP accumulation by sodium nitroprusside is potentiated via a Gs mechanism in intact pinealocytes. J Neurochem. 1995 Feb;64(2):711–717. doi: 10.1046/j.1471-4159.1995.64020711.x. [DOI] [PubMed] [Google Scholar]
- Willmott N., Sethi J. K., Walseth T. F., Lee H. C., White A. M., Galione A. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem. 1996 Feb 16;271(7):3699–3705. doi: 10.1074/jbc.271.7.3699. [DOI] [PubMed] [Google Scholar]
- Wink D. A., Cook J. A., Pacelli R., DeGraff W., Gamson J., Liebmann J., Krishna M. C., Mitchell J. B. The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: a direct correlation between nitric oxide formation and protection. Arch Biochem Biophys. 1996 Jul 15;331(2):241–248. doi: 10.1006/abbi.1996.0304. [DOI] [PubMed] [Google Scholar]
- Xu X., Zeng W., Diaz J., Lau K. S., Gukovskaya A. C., Brown R. J., Pandol S. J., Muallem S. nNOS and Ca2+ influx in rat pancreatic acinar and submandibular salivary gland cells. Cell Calcium. 1997 Sep;22(3):217–228. doi: 10.1016/s0143-4160(97)90015-4. [DOI] [PubMed] [Google Scholar]