Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 1;355(Pt 1):97–104. doi: 10.1042/0264-6021:3550097

Enzymic characterization of epidermis-derived 12-lipoxygenase isoenzymes.

M Siebert 1, P Krieg 1, W D Lehmann 1, F Marks 1, G Fürstenberger 1
PMCID: PMC1221716  PMID: 11256953

Abstract

Substrate selectivity and other enzymic characteristics of two epidermis-derived lipoxygenases (LOXs), the epidermis-type (e) (12S)-LOX and (12R)-LOX, were compared with those of the platelet-type (p) (12S)-LOX. In contrast with p(12S)-LOX, e(12S)-LOX and (12R)-LOX exhibited no or very low reactivity towards the customary substrates linoleic acid and arachidonic acid but metabolized the corresponding fatty acid methyl esters, which, in contrast, were not accepted as substrates by p(12S)-LOX. Other esters of arachidonic acid and linoleic acid, including propan-2-yl and cholesterol esters, 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-linoleyl-sn-glycero-3-phosphoethanolamine, and ceramide 1 carrying an omega-linoleic acid ester, were not metabolized by these three LOX isoenzymes. Among various polyunsaturated fatty acids the isomeric eicosatrienoic acids were found to be oxygenated by e(12S)-LOX but not by (12R)-LOX. 4,7,10,13,16,19-Docosahexaenoic acid as a substrate was restricted to p(12S)-LOX. Variations in the pH and the Ca(2+) content of the incubation medium affected the catalytic potential only slightly. Whereas (12R)-LOX activity increased in the presence of Ca(2+) and with an acidic pH, Ca(2+) had no effect on p(12S)-LOX and e(12S)-LOX; an acidic pH decreased the catalytic activity of the latter two. However, the catalytic activity of the epidermis-type isoenzymes, but not of p(12S)-LOX, was found to be markedly increased in the presence of DMSO. Under these conditions, e(12S)-LOX and (12R)-LOX oxygenated 4,7,10,13,16,19-docosahexaenoic acid to 14-hydroxy-4,7,10,12,16,19-docosahexaenoic acid and 13-hydroxy-4,7,10,14,16,19-docosahexaenoic acid respectively. In addition, (9R)-hydroxyoctadeca-10,12-dienoic acid methyl ester was generated from linoleic acid methyl ester by (12R)-LOX. Independently of the substrate, the catalytic activity of e(12S)-LOX and (12R)-LOX was always at most 2% of that of p(12S)-LOX with arachidonic acid as substrate.

Full Text

The Full Text of this article is available as a PDF (164.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  2. Boeglin W. E., Kim R. B., Brash A. R. A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6744–6749. doi: 10.1073/pnas.95.12.6744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brash A. R., Boeglin W. E., Chang M. S. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6148–6152. doi: 10.1073/pnas.94.12.6148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brash A. R., Boeglin W. E., Chang M. S., Shieh B. H. Purification and molecular cloning of an 8R-lipoxygenase from the coral Plexaura homomalla reveal the related primary structures of R- and S-lipoxygenases. J Biol Chem. 1996 Aug 23;271(34):20949–20957. doi: 10.1074/jbc.271.34.20949. [DOI] [PubMed] [Google Scholar]
  5. Brash A. R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999 Aug 20;274(34):23679–23682. doi: 10.1074/jbc.274.34.23679. [DOI] [PubMed] [Google Scholar]
  6. Brinckmann R., Schnurr K., Heydeck D., Rosenbach T., Kolde G., Kühn H. Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood. 1998 Jan 1;91(1):64–74. [PubMed] [Google Scholar]
  7. Bürger F., Krieg P., Kinzig A., Schurich B., Marks F., Fürstenberger G. Constitutive expression of 8-lipoxygenase in papillomas and clastogenic effects of lipoxygenase-derived arachidonic acid metabolites in keratinocytes. Mol Carcinog. 1999 Feb;24(2):108–117. doi: 10.1002/(sici)1098-2744(199902)24:2<108::aid-mc5>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  8. Bürger F., Krieg P., Marks F., Fürstenberger G. Positional- and stereo-selectivity of fatty acid oxygenation catalysed by mouse (12S)-lipoxygenase isoenzymes. Biochem J. 2000 Jun 1;348(Pt 2):329–335. [PMC free article] [PubMed] [Google Scholar]
  9. Durham A. C. A survey of readily available chelators for buffering calcium ion concentrations in physiological solutions. Cell Calcium. 1983 Feb;4(1):33–46. doi: 10.1016/0143-4160(83)90047-7. [DOI] [PubMed] [Google Scholar]
  10. Funk C. D., Keeney D. S., Oliw E. H., Boeglin W. E., Brash A. R. Functional expression and cellular localization of a mouse epidermal lipoxygenase. J Biol Chem. 1996 Sep 20;271(38):23338–23344. doi: 10.1074/jbc.271.38.23338. [DOI] [PubMed] [Google Scholar]
  11. Fürstenberger G., Hagedorn H., Jacobi T., Besemfelder E., Stephan M., Lehmann W. D., Marks F. Characterization of an 8-lipoxygenase activity induced by the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate in mouse skin in vivo. J Biol Chem. 1991 Aug 25;266(24):15738–15745. [PubMed] [Google Scholar]
  12. Hagmann W., Kagawa D., Renaud C., Honn K. V. Activity and protein distribution of 12-lipoxygenase in HEL cells: induction of membrane-association by phorbol ester TPA, modulation of activity by glutathione and 13-HPODE, and Ca(2+)-dependent translocation to membranes. Prostaglandins. 1993 Dec;46(6):471–477. doi: 10.1016/0090-6980(93)90066-g. [DOI] [PubMed] [Google Scholar]
  13. Heidt M., Fürstenberger G., Vogel S., Marks F., Krieg P. Diversity of mouse lipoxygenases: identification of a subfamily of epidermal isozymes exhibiting a differentiation-dependent mRNA expression pattern. Lipids. 2000 Jul;35(7):701–707. doi: 10.1007/s11745-000-0576-0. [DOI] [PubMed] [Google Scholar]
  14. Ivanov I., Schwarz K., Holzhütter H. G., Myagkova G., Kühn H. Omega-oxidation impairs oxidizability of polyenoic fatty acids by 15-lipoxygenases: consequences for substrate orientation at the active site. Biochem J. 1998 Dec 1;336(Pt 2):345–352. doi: 10.1042/bj3360345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karanian J. W., Kim H. Y., Yergey J. A., Salem N., Jr Lipoxygenase stimulating effects of hydroxylated docosahexaenoates produced by human platelets. Prostaglandins Leukot Essent Fatty Acids. 1994 May;50(5):271–278. doi: 10.1016/0952-3278(94)90166-x. [DOI] [PubMed] [Google Scholar]
  16. Kinzig A., Fürstenberger G., Bürger F., Vogel S., Müller-Decker K., Mincheva A., Lichter P., Marks F., Krieg P. Murine epidermal lipoxygenase (Aloxe) encodes a 12-lipoxygenase isoform. FEBS Lett. 1997 Feb 3;402(2-3):162–166. doi: 10.1016/s0014-5793(96)01517-7. [DOI] [PubMed] [Google Scholar]
  17. Kinzig A., Heidt M., Fürstenberger G., Marks F., Krieg P. cDNA cloning, genomic structure, and chromosomal localization of a novel murine epidermis-type lipoxygenase. Genomics. 1999 Jun 1;58(2):158–164. doi: 10.1006/geno.1999.5816. [DOI] [PubMed] [Google Scholar]
  18. Krieg P., Kinzig A., Heidt M., Marks F., Fürstenberger G. cDNA cloning of a 8-lipoxygenase and a novel epidermis-type lipoxygenase from phorbol ester-treated mouse skin. Biochim Biophys Acta. 1998 Mar 6;1391(1):7–12. doi: 10.1016/s0005-2760(97)00214-2. [DOI] [PubMed] [Google Scholar]
  19. Krieg P., Kinzig A., Ress-Löschke M., Vogel S., Vanlandingham B., Stephan M., Lehmann W. D., Marks F., Fürstenberger G. 12-Lipoxygenase isoenzymes in mouse skin tumor development. Mol Carcinog. 1995 Oct;14(2):118–129. doi: 10.1002/mc.2940140208. [DOI] [PubMed] [Google Scholar]
  20. Krieg P., Siebert M., Kinzig A., Bettenhausen R., Marks F., Fürstenberger G. Murine 12(R)-lipoxygenase: functional expression, genomic structure and chromosomal localization. FEBS Lett. 1999 Mar 5;446(1):142–148. doi: 10.1016/s0014-5793(99)00196-9. [DOI] [PubMed] [Google Scholar]
  21. Kuhn H., Thiele B. J. The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett. 1999 Apr 16;449(1):7–11. doi: 10.1016/s0014-5793(99)00396-8. [DOI] [PubMed] [Google Scholar]
  22. Lehmann W. D. Regio- and stereochemistry of the dioxygenation reaction catalyzed by (S)-type lipoxygenases or by the cyclooxygenase activity of prostaglandin H synthases. Free Radic Biol Med. 1994 Feb;16(2):241–253. doi: 10.1016/0891-5849(94)90149-x. [DOI] [PubMed] [Google Scholar]
  23. Nakamura T., Bratton D. L., Murphy R. C. Analysis of epoxyeicosatrienoic and monohydroxyeicosatetraenoic acids esterified to phospholipids in human red blood cells by electrospray tandem mass spectrometry. J Mass Spectrom. 1997 Aug;32(8):888–896. doi: 10.1002/(SICI)1096-9888(199708)32:8<888::AID-JMS548>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  24. Reddy K. V., Hammarberg T., Rådmark O. Mg2+ activates 5-lipoxygenase in vitro: dependency on concentrations of phosphatidylcholine and arachidonic acid. Biochemistry. 2000 Feb 22;39(7):1840–1848. doi: 10.1021/bi9919246. [DOI] [PubMed] [Google Scholar]
  25. Saeed S. A., Karimi S. J., Suria A. Differential effects of dimethyl sulfoxide on human platelet aggregation and arachidonic acid metabolism. Biochem Med Metab Biol. 1988 Oct;40(2):143–150. doi: 10.1016/0885-4505(88)90115-6. [DOI] [PubMed] [Google Scholar]
  26. Sun D., McDonnell M., Chen X. S., Lakkis M. M., Li H., Isaacs S. N., Elsea S. H., Patel P. I., Funk C. D. Human 12(R)-lipoxygenase and the mouse ortholog. Molecular cloning, expression, and gene chromosomal assignment. J Biol Chem. 1998 Dec 11;273(50):33540–33547. doi: 10.1074/jbc.273.50.33540. [DOI] [PubMed] [Google Scholar]
  27. Whitfield J. F., Bird R. P., Chakravarthy B. R., Isaacs R. J., Morley P. Calcium-cell cycle regulator, differentiator, killer, chemopreventor, and maybe, tumor promoter. J Cell Biochem Suppl. 1995;22:74–91. [PubMed] [Google Scholar]
  28. Yu Z. W., Quinn P. J. Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep. 1994 Dec;14(6):259–281. doi: 10.1007/BF01199051. [DOI] [PubMed] [Google Scholar]
  29. Ziboh V. A. The significance of polyunsaturated fatty acids in cutaneous biology. Lipids. 1996 Mar;31 (Suppl):S249–S253. doi: 10.1007/BF02637085. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES