Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 1;355(Pt 1):113–121. doi: 10.1042/0264-6021:3550113

Characterization of a novel phosphatidylinositol 3-phosphate-binding protein containing two FYVE fingers in tandem that is targeted to the Golgi.

P C Cheung 1, L Trinkle-Mulcahy 1, P Cohen 1, J M Lucocq 1
PMCID: PMC1221718  PMID: 11256955

Abstract

We have identified a novel protein of predicted molecular mass 40 kDa that contains two FYVE domains in tandem and has therefore been named TAFF1 (TAndem FYVE Fingers-1). The protein is expressed predominantly in heart and binds to PtdIns3P specifically, even though the FYVE domains in TAFF1 lacks the first Arg of the consensus sequence R(K/R)HHCR, critical for the PtdIns3P binding of other FYVE domains identified so far. The first Arg is replaced by a Thr and Ser in the N-terminal and C-terminal FYVE domains of TAFF1 respectively. Mutational analysis indicates that both FYVE domains are required for high affinity binding to PtdIns3P. Cell localization studies using a green fluorescent protein fusion show that TAFF1 is localized to the Golgi, and that the Golgi targeting sequence is located within the N-terminal 187 residues and not in either FYVE domain.

Full Text

The Full Text of this article is available as a PDF (440.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Angelo R., Rubin C. S. Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans. J Biol Chem. 1998 Jun 5;273(23):14633–14643. doi: 10.1074/jbc.273.23.14633. [DOI] [PubMed] [Google Scholar]
  3. Balendran A., Biondi R. M., Cheung P. C., Casamayor A., Deak M., Alessi D. R. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1. J Biol Chem. 2000 Jul 7;275(27):20806–20813. doi: 10.1074/jbc.M000421200. [DOI] [PubMed] [Google Scholar]
  4. Biondi R. M., Cheung P. C., Casamayor A., Deak M., Currie R. A., Alessi D. R. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 2000 Mar 1;19(5):979–988. doi: 10.1093/emboj/19.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burd C. G., Emr S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell. 1998 Jul;2(1):157–162. doi: 10.1016/s1097-2765(00)80125-2. [DOI] [PubMed] [Google Scholar]
  6. Chen C. A., Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed] [Google Scholar]
  7. Derubeis A. R., Young M. F., Jia L., Robey P. G., Fisher L. W. Double FYVE-containing protein 1 (DFCP1): isolation, cloning and characterization of a novel FYVE finger protein from a human bone marrow cDNA library. Gene. 2000 Sep 19;255(2):195–203. doi: 10.1016/s0378-1119(00)00303-6. [DOI] [PubMed] [Google Scholar]
  8. Dowler S., Currie R. A., Campbell D. G., Deak M., Kular G., Downes C. P., Alessi D. R. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J. 2000 Oct 1;351(Pt 1):19–31. doi: 10.1042/0264-6021:3510019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fruman D. A., Rameh L. E., Cantley L. C. Phosphoinositide binding domains: embracing 3-phosphate. Cell. 1999 Jun 25;97(7):817–820. doi: 10.1016/s0092-8674(00)80792-8. [DOI] [PubMed] [Google Scholar]
  10. Gaullier J. M., Ronning E., Gillooly D. J., Stenmark H. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J Biol Chem. 2000 Aug 11;275(32):24595–24600. doi: 10.1074/jbc.M906554199. [DOI] [PubMed] [Google Scholar]
  11. Gaullier J. M., Simonsen A., D'Arrigo A., Bremnes B., Stenmark H., Aasland R. FYVE fingers bind PtdIns(3)P. Nature. 1998 Jul 30;394(6692):432–433. doi: 10.1038/28767. [DOI] [PubMed] [Google Scholar]
  12. Gillooly D. J., Morrow I. C., Lindsay M., Gould R., Bryant N. J., Gaullier J. M., Parton R. G., Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 2000 Sep 1;19(17):4577–4588. doi: 10.1093/emboj/19.17.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffiths G., McDowall A., Back R., Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984 Oct;89(1):65–78. doi: 10.1016/s0022-5320(84)80024-6. [DOI] [PubMed] [Google Scholar]
  14. Hickinson D. M., Lucocq J. M., Towler M. C., Clough S., James J., James S. R., Downes C. P., Ponnambalam S. Association of a phosphatidylinositol-specific 3-kinase with a human trans-Golgi network resident protein. Curr Biol. 1997 Dec 1;7(12):987–990. doi: 10.1016/s0960-9822(06)00418-0. [DOI] [PubMed] [Google Scholar]
  15. Hurley J. H., Misra S. Signaling and subcellular targeting by membrane-binding domains. Annu Rev Biophys Biomol Struct. 2000;29:49–79. doi: 10.1146/annurev.biophys.29.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jakymiw A., Raharjo E., Rattner J. B., Eystathioy T., Chan E. K., Fujita D. J. Identification and characterization of a novel Golgi protein, golgin-67. J Biol Chem. 2000 Feb 11;275(6):4137–4144. doi: 10.1074/jbc.275.6.4137. [DOI] [PubMed] [Google Scholar]
  17. Komada M., Masaki R., Yamamoto A., Kitamura N. Hrs, a tyrosine kinase substrate with a conserved double zinc finger domain, is localized to the cytoplasmic surface of early endosomes. J Biol Chem. 1997 Aug 15;272(33):20538–20544. doi: 10.1074/jbc.272.33.20538. [DOI] [PubMed] [Google Scholar]
  18. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kutateladze T. G., Ogburn K. D., Watson W. T., de Beer T., Emr S. D., Burd C. G., Overduin M. Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol Cell. 1999 Jun;3(6):805–811. doi: 10.1016/s1097-2765(01)80013-7. [DOI] [PubMed] [Google Scholar]
  20. Lawe D. C., Patki V., Heller-Harrison R., Lambright D., Corvera S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J Biol Chem. 2000 Feb 4;275(5):3699–3705. doi: 10.1074/jbc.275.5.3699. [DOI] [PubMed] [Google Scholar]
  21. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  22. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  23. Mao Y., Nickitenko A., Duan X., Lloyd T. E., Wu M. N., Bellen H., Quiocho F. A. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell. 2000 Feb 18;100(4):447–456. doi: 10.1016/s0092-8674(00)80680-7. [DOI] [PubMed] [Google Scholar]
  24. Misra S., Hurley J. H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell. 1999 May 28;97(5):657–666. doi: 10.1016/s0092-8674(00)80776-x. [DOI] [PubMed] [Google Scholar]
  25. Munro S. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 1998 Jan;8(1):11–15. doi: 10.1016/S0962-8924(97)01197-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Munro S., Nichols B. J. The GRIP domain - a novel Golgi-targeting domain found in several coiled-coil proteins. Curr Biol. 1999 Apr 8;9(7):377–380. doi: 10.1016/s0960-9822(99)80166-3. [DOI] [PubMed] [Google Scholar]
  27. Patki V., Lawe D. C., Corvera S., Virbasius J. V., Chawla A. A functional PtdIns(3)P-binding motif. Nature. 1998 Jul 30;394(6692):433–434. doi: 10.1038/28771. [DOI] [PubMed] [Google Scholar]
  28. Prescott A. R., Lucocq J. M., James J., Lister J. M., Ponnambalam S. Distinct compartmentalization of TGN46 and beta 1,4-galactosyltransferase in HeLa cells. Eur J Cell Biol. 1997 Mar;72(3):238–246. [PubMed] [Google Scholar]
  29. Shaw G. The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays. 1996 Jan;18(1):35–46. doi: 10.1002/bies.950180109. [DOI] [PubMed] [Google Scholar]
  30. Simonsen A., Lippé R., Christoforidis S., Gaullier J. M., Brech A., Callaghan J., Toh B. H., Murphy C., Zerial M., Stenmark H. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature. 1998 Jul 30;394(6692):494–498. doi: 10.1038/28879. [DOI] [PubMed] [Google Scholar]
  31. Stenmark H., Aasland R. FYVE-finger proteins--effectors of an inositol lipid. J Cell Sci. 1999 Dec;112(Pt 23):4175–4183. doi: 10.1242/jcs.112.23.4175. [DOI] [PubMed] [Google Scholar]
  32. Stenmark H., Aasland R., Toh B. H., D'Arrigo A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem. 1996 Sep 27;271(39):24048–24054. doi: 10.1074/jbc.271.39.24048. [DOI] [PubMed] [Google Scholar]
  33. Stevenson J. M., Perera I. Y., Boss W. F. A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem. 1998 Aug 28;273(35):22761–22767. doi: 10.1074/jbc.273.35.22761. [DOI] [PubMed] [Google Scholar]
  34. Tall G. G., Hama H., DeWald D. B., Horazdovsky B. F. The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol Biol Cell. 1999 Jun;10(6):1873–1889. doi: 10.1091/mbc.10.6.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tang B. L., Peter F., Krijnse-Locker J., Low S. H., Griffiths G., Hong W. The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus. Mol Cell Biol. 1997 Jan;17(1):256–266. doi: 10.1128/mcb.17.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsukazaki T., Chiang T. A., Davison A. F., Attisano L., Wrana J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998 Dec 11;95(6):779–791. doi: 10.1016/s0092-8674(00)81701-8. [DOI] [PubMed] [Google Scholar]
  37. Weisman L. S., Wickner W. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J Biol Chem. 1992 Jan 5;267(1):618–623. [PubMed] [Google Scholar]
  38. Zhao R., Qi Y., Zhao Z. J. FYVE-DSP1, a dual-specificity protein phosphatase containing an FYVE domain. Biochem Biophys Res Commun. 2000 Apr 2;270(1):222–229. doi: 10.1006/bbrc.2000.2417. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES