Abstract
Glutamate mutase catalyses an unusual isomerization involving free-radical intermediates that are generated by homolysis of the cobalt-carbon bond of the coenzyme adenosylcobalamin (coenzyme B(12)). A variety of techniques have been used to examine the interaction between the protein and adenosylcobalamin, and between the protein and the products of coenzyme homolysis, cob(II)alamin and 5'-deoxyadenosine. These include equilibrium gel filtration, isothermal titration calorimetry, and resonance Raman, UV-visible and EPR spectroscopies. The thermodynamics of adenosylcobalamin binding to the protein have been examined and appear to be entirely entropy-driven, with DeltaS=109 J.mol(-1).K(-1). The cobalt-carbon bond stretching frequency is unchanged upon coenzyme binding to the protein, arguing against a ground-state destabilization of the cobalt-carbon bond of adenosylcobalamin by the protein. However, reconstitution of the enzyme with cob(II)alamin and 5'-deoxyadenosine, the two stable intermediates formed subsequent to homolysis, results in the blue-shifting of two of the bands comprising the UV-visible spectrum of the corrin ring. The most plausible interpretation of this result is that an interaction between the protein, 5'-deoxyadenosine and cob(II)alamin introduces a distortion into the ring corrin that perturbs its electronic properties.
Full Text
The Full Text of this article is available as a PDF (172.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARKER H. A., ROOZE V., SUZUKI F., IODICE A. A. THE GLUTAMATE MUTASE SYSTEM. ASSAYS AND PROPERTIES. J Biol Chem. 1964 Oct;239:3260–3266. [PubMed] [Google Scholar]
- Banerjee R. The Yin-Yang of cobalamin biochemistry. Chem Biol. 1997 Mar;4(3):175–186. doi: 10.1016/s1074-5521(97)90286-6. [DOI] [PubMed] [Google Scholar]
- Bothe H., Darley D. J., Albracht S. P., Gerfen G. J., Golding B. T., Buckel W. Identification of the 4-glutamyl radical as an intermediate in the carbon skeleton rearrangement catalyzed by coenzyme B12-dependent glutamate mutase from Clostridium cochlearium. Biochemistry. 1998 Mar 24;37(12):4105–4113. doi: 10.1021/bi971393q. [DOI] [PubMed] [Google Scholar]
- Chen H. P., Marsh E. N. Adenosylcobalamin-dependent glutamate mutase: examination of substrate and coenzyme binding in an engineered fusion protein possessing simplified subunit structure and kinetic properties. Biochemistry. 1997 Dec 2;36(48):14939–14945. doi: 10.1021/bi971374g. [DOI] [PubMed] [Google Scholar]
- Chowdhury S., Banerjee R. Thermodynamic and kinetic characterization of Co-C bond homolysis catalyzed by coenzyme B(12)-dependent methylmalonyl-CoA mutase. Biochemistry. 2000 Jul 11;39(27):7998–8006. doi: 10.1021/bi992535e. [DOI] [PubMed] [Google Scholar]
- Drennan C. L., Matthews R. G., Ludwig M. L. Cobalamin-dependent methionine synthase: the structure of a methylcobalamin-binding fragment and implications for other B12-dependent enzymes. Curr Opin Struct Biol. 1994 Dec;4(6):919–929. doi: 10.1016/0959-440x(94)90275-5. [DOI] [PubMed] [Google Scholar]
- Franco R., Ma J. G., Lu Y., Ferreira G. C., Shelnutt J. A. Porphyrin interactions with wild-type and mutant mouse ferrochelatase. Biochemistry. 2000 Mar 14;39(10):2517–2529. doi: 10.1021/bi991346t. [DOI] [PubMed] [Google Scholar]
- Halpern J. Mechanisms of coenzyme B12-dependent rearrangements. Science. 1985 Feb 22;227(4689):869–875. doi: 10.1126/science.2857503. [DOI] [PubMed] [Google Scholar]
- Holloway D. E., Marsh E. N. Adenosylcobalamin-dependent glutamate mutase from Clostridium tetanomorphum. Overexpression in Escherichia coli, purification, and characterization of the recombinant enzyme. J Biol Chem. 1994 Aug 12;269(32):20425–20430. [PubMed] [Google Scholar]
- Jentzen W., Ma J. G., Shelnutt J. A. Conservation of the conformation of the porphyrin macrocycle in hemoproteins. Biophys J. 1998 Feb;74(2 Pt 1):753–763. doi: 10.1016/S0006-3495(98)74000-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Licht S. S., Booker S., Stubbe J. Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation. Biochemistry. 1999 Jan 26;38(4):1221–1233. doi: 10.1021/bi981885i. [DOI] [PubMed] [Google Scholar]
- Licht S. S., Lawrence C. C., Stubbe J. Thermodynamic and kinetic studies on carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: the importance of entropy in catalysis. Biochemistry. 1999 Jan 26;38(4):1234–1242. doi: 10.1021/bi981886a. [DOI] [PubMed] [Google Scholar]
- Ma J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., Shelnutt J. A. The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3. Biochemistry. 1998 Sep 8;37(36):12431–12442. doi: 10.1021/bi981189i. [DOI] [PubMed] [Google Scholar]
- Marsh E. N., Ballou D. P. Coupling of cobalt-carbon bond homolysis and hydrogen atom abstraction in adenosylcobalamin-dependent glutamate mutase. Biochemistry. 1998 Aug 25;37(34):11864–11872. doi: 10.1021/bi980512e. [DOI] [PubMed] [Google Scholar]
- Marsh E. N. Coenzyme B12 (cobalamin)-dependent enzymes. Essays Biochem. 1999;34:139–154. doi: 10.1042/bse0340139. [DOI] [PubMed] [Google Scholar]
- Marsh EN. Review Article Coenzyme-B(12)-Dependent Glutamate Mutase. Bioorg Chem. 2000 Jun;28(3):176–189. doi: 10.1006/bioo.2000.1168. [DOI] [PubMed] [Google Scholar]
- Padmakumar R., Padmakumar R., Banerjee R. Evidence that cobalt-carbon bond homolysis is coupled to hydrogen atom abstraction from substrate in methylmalonyl-CoA mutase. Biochemistry. 1997 Mar 25;36(12):3713–3718. doi: 10.1021/bi962503g. [DOI] [PubMed] [Google Scholar]
- Reitzer R., Gruber K., Jogl G., Wagner U. G., Bothe H., Buckel W., Kratky C. Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B12-dependent enzyme provides new mechanistic insights. Structure. 1999 Aug 15;7(8):891–902. doi: 10.1016/s0969-2126(99)80116-6. [DOI] [PubMed] [Google Scholar]
- Tollinger M., Konrat R., Hilbert B. H., Marsh E. N., Kräutler B. How a protein prepares for B12 binding: structure and dynamics of the B12-binding subunit of glutamate mutase from Clostridium tetanomorphum. Structure. 1998 Aug 15;6(8):1021–1033. doi: 10.1016/s0969-2126(98)00103-8. [DOI] [PubMed] [Google Scholar]
- Zelder O., Beatrix B., Kroll F., Buckel W. Coordination of a histidine residue of the protein-component S to the cobalt atom in coenzyme B12-dependent glutamate mutase from Clostridium cochlearium. FEBS Lett. 1995 Aug 7;369(2-3):252–254. doi: 10.1016/0014-5793(95)00762-x. [DOI] [PubMed] [Google Scholar]
- Zelder O., Beatrix B., Leutbecher U., Buckel W. Characterization of the coenzyme-B12-dependent glutamate mutase from Clostridium cochlearium produced in Escherichia coli. Eur J Biochem. 1994 Dec 1;226(2):577–585. doi: 10.1111/j.1432-1033.1994.tb20083.x. [DOI] [PubMed] [Google Scholar]