Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 1;355(Pt 1):199–206. doi: 10.1042/0264-6021:3550199

Effect of polyamine depletion on caspase activation: a study with spermine synthase-deficient cells.

C Stefanelli 1, C Pignatti 1, B Tantini 1, M Fattori 1, I Stanic 1, C A Mackintosh 1, F Flamigni 1, C Guarnieri 1, C M Caldarera 1, A E Pegg 1
PMCID: PMC1221727  PMID: 11256964

Abstract

Activation of the caspase proteases represents a central point in apoptosis. The requirement for spermine for the processes leading to caspase activation has been studied in transformed embryonic fibroblasts obtained from gyro (Gy) mutant male mice. These cells lack spermine synthase activity and thus provide a valuable model to study the role of spermine in cell processes. Gy fibroblasts do not contain spermine and have a higher spermidine content. However, when compared with fibroblasts obtained from normal male littermates (N cells), Gy fibroblasts were observed to grow normally. The lack of spermine did not affect the expression of Bcl-2, and caspases 3 and 9 were activated by etoposide in both N and Gy cells, indicating that spermine is dispensable for caspase activation. Spermine deficiency did not significantly influence caspase activity in cells treated with etoposide, cycloheximide or staurosporine, but sensitized the cells to UV irradiation, which triggered significantly higher caspase activity in Gy cells compared with N cells. alpha-Difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis that is able to deplete cells of putrescine and spermidine, but usually does not influence spermine content, was able to produce a more complete polyamine depletion in Gy cells. This depletion, which included spermine deficiency, dramatically increased caspase activation and cell death in Gy fibroblasts exposed to UV irradiation. On the other hand, in either N or Gy cells, DFMO treatment did not influence caspase activity triggered by staurosporine, but inhibited it when the inducers were cycloheximide or etoposide. In Gy cells depleted of polyamines by DFMO, polyamine replenishment with either spermidine or spermine was sufficient to restore caspase activity induced by etoposide, indicating that, in this model, polyamines have an interchangeable role in supporting caspase activation. Therefore, spermine is not required for such activation, and the effect and specificity of polyamine depletion on caspase activity may be very different, depending on the role of polyamines in the specific death pathways engaged by different stimuli. Some inducers of apoptosis, for example etoposide, absolutely require polyamines for caspase activation, yet the lack of polyamines, particularly spermine, strongly increases caspase activation when induced by UV irradiation.

Full Text

The Full Text of this article is available as a PDF (151.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M., Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998 Aug 28;281(5381):1322–1326. doi: 10.1126/science.281.5381.1322. [DOI] [PubMed] [Google Scholar]
  2. Alm K., Berntsson P., Oredsson S. M. Topoisomerase II is nonfunctional in polyamine-depleted cells. J Cell Biochem. 1999 Oct 1;75(1):46–55. doi: 10.1002/(sici)1097-4644(19991001)75:1<46::aid-jcb5>3.3.co;2-e. [DOI] [PubMed] [Google Scholar]
  3. Bakic M., Chan D., Freireich E. J., Marton L. J., Zwelling L. A. Effect of polyamine depletion by alpha-difluoromethylornithine or (2R,5R)-6-heptyne-2,5-diamine on drug-induced topoisomerase II-mediated DNA cleavage and cytotoxicity in human and murine leukemia cells. Cancer Res. 1987 Dec 15;47(24 Pt 1):6437–6443. [PubMed] [Google Scholar]
  4. Bock J. M., Pickart M. A., Pink J. J., Harari P. M. Modulation of tumor cell proliferation and apoptosis by polyamine depletion in cells of head and neck squamous cell carcinomas. Radiat Res. 1999 Dec;152(6):604–610. [PubMed] [Google Scholar]
  5. Bratton D. L., Fadok V. A., Richter D. A., Kailey J. M., Frasch S. C., Nakamura T., Henson P. M. Polyamine regulation of plasma membrane phospholipid flip-flop during apoptosis. J Biol Chem. 1999 Oct 1;274(40):28113–28120. doi: 10.1074/jbc.274.40.28113. [DOI] [PubMed] [Google Scholar]
  6. Brunton V. G., Grant M. H., Wallace H. M. Mechanisms of spermine toxicity in baby-hamster kidney (BHK) cells. The role of amine oxidases and oxidative stress. Biochem J. 1991 Nov 15;280(Pt 1):193–198. doi: 10.1042/bj2800193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burden D. A., Osheroff N. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta. 1998 Oct 1;1400(1-3):139–154. doi: 10.1016/s0167-4781(98)00132-8. [DOI] [PubMed] [Google Scholar]
  8. Casero R. A., Jr, Pegg A. E. Spermidine/spermine N1-acetyltransferase--the turning point in polyamine metabolism. FASEB J. 1993 May;7(8):653–661. [PubMed] [Google Scholar]
  9. Colman M. S., Afshari C. A., Barrett J. C. Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res. 2000 Apr;462(2-3):179–188. doi: 10.1016/s1383-5742(00)00035-1. [DOI] [PubMed] [Google Scholar]
  10. Das B., Rao A. R., Madhubala R. Difluoromethylornithine antagonizes taxol cytotoxicity in MCF-7 human breast cancer cells. Oncol Res. 1997;9(11-12):565–572. [PubMed] [Google Scholar]
  11. Desiderio M. A., Bergamaschi D., Mascellani E., De Feudis P., Erba E., D'Incalci M. Treatment with inhibitors of polyamine biosynthesis, which selectively lower intracellular spermine, does not affect the activity of alkylating agents but antagonizes the cytotoxicity of DNA topoisomerase II inhibitors. Br J Cancer. 1997;75(7):1028–1034. doi: 10.1038/bjc.1997.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drezner M. K. PHEX gene and hypophosphatemia. Kidney Int. 2000 Jan;57(1):9–18. doi: 10.1046/j.1523-1755.2000.00807.x. [DOI] [PubMed] [Google Scholar]
  13. Earnshaw W. C., Martins L. M., Kaufmann S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424. doi: 10.1146/annurev.biochem.68.1.383. [DOI] [PubMed] [Google Scholar]
  14. Efferth T., Grassmann R. Impact of viral oncogenesis on responses to anti-cancer drugs and irradiation. Crit Rev Oncog. 2000;11(2):165–187. [PubMed] [Google Scholar]
  15. Evan G., Littlewood T. A matter of life and cell death. Science. 1998 Aug 28;281(5381):1317–1322. doi: 10.1126/science.281.5381.1317. [DOI] [PubMed] [Google Scholar]
  16. Feuerstein B. G., Williams L. D., Basu H. S., Marton L. J. Implications and concepts of polyamine-nucleic acid interactions. J Cell Biochem. 1991 May;46(1):37–47. doi: 10.1002/jcb.240460107. [DOI] [PubMed] [Google Scholar]
  17. Fong L. Y., Pegg A. E., Magee P. N. Alpha-difluoromethylornithine inhibits N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in zinc-deficient rats: effects on esophageal cell proliferation and apoptosis. Cancer Res. 1998 Dec 1;58(23):5380–5388. [PubMed] [Google Scholar]
  18. Gahl W. A., Pitot H. C. Reversal by aminoguanidine of the inhibition of proliferation of human fibroblasts by spermidine and spermine. Chem Biol Interact. 1978 Jul;22(1):91–98. doi: 10.1016/0009-2797(78)90152-7. [DOI] [PubMed] [Google Scholar]
  19. Giuseppina Monti M., Ghiaroni S., Barbieri D., Franceschi C., Marverti G., Moruzzi M. S. 2-deoxy-d-ribose-induced apoptosis in HL-60 cells is associated with the cell cycle progression by spermidine. Biochem Biophys Res Commun. 1999 Apr 13;257(2):460–465. doi: 10.1006/bbrc.1999.0492. [DOI] [PubMed] [Google Scholar]
  20. Ivanova S., Botchkina G. I., Al-Abed Y., Meistrell M., 3rd, Batliwalla F., Dubinsky J. M., Iadecola C., Wang H., Gregersen P. K., Eaton J. W. Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. J Exp Med. 1998 Jul 20;188(2):327–340. doi: 10.1084/jem.188.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaufmann S. H. Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim Biophys Acta. 1998 Oct 1;1400(1-3):195–211. doi: 10.1016/s0167-4781(98)00136-5. [DOI] [PubMed] [Google Scholar]
  22. Kaufmann S. H., Earnshaw W. C. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000 Apr 10;256(1):42–49. doi: 10.1006/excr.2000.4838. [DOI] [PubMed] [Google Scholar]
  23. Khan A. U., Mei Y. H., Wilson T. A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11426–11427. doi: 10.1073/pnas.89.23.11426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lindsay G. S., Wallace H. M. Changes in polyamine catabolism in HL-60 human promyelogenous leukaemic cells in response to etoposide-induced apoptosis. Biochem J. 1999 Jan 1;337(Pt 1):83–87. [PMC free article] [PubMed] [Google Scholar]
  25. Lorenz B., Francis F., Gempel K., Böddrich A., Josten M., Schmahl W., Schmidt J., Lehrach H., Meitinger T., Strom T. M. Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum Mol Genet. 1998 Mar;7(3):541–547. doi: 10.1093/hmg/7.3.541. [DOI] [PubMed] [Google Scholar]
  26. Lyon M. F., Scriver C. R., Baker L. R., Tenenhouse H. S., Kronick J., Mandla S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4899–4903. doi: 10.1073/pnas.83.13.4899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Løvaas E. Antioxidative and metal-chelating effects of polyamines. Adv Pharmacol. 1997;38:119–149. doi: 10.1016/s1054-3589(08)60982-5. [DOI] [PubMed] [Google Scholar]
  28. Mackintosh C. A., Pegg A. E. Effect of spermine synthase deficiency on polyamine biosynthesis and content in mice and embryonic fibroblasts, and the sensitivity of fibroblasts to 1,3-bis-(2-chloroethyl)-N-nitrosourea. Biochem J. 2000 Oct 15;351(Pt 2):439–447. [PMC free article] [PubMed] [Google Scholar]
  29. Marton L. J. Effects of treatment with DNA-directed cancer chemotherapeutic agents after polyamine depletion. Pharmacol Ther. 1987;32(2):183–190. doi: 10.1016/0163-7258(87)90058-1. [DOI] [PubMed] [Google Scholar]
  30. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  31. Meyer R. A., Jr, Young C. G., Meyer M. H., Garges P. L., Price D. K. Effect of age on the expression of Pex (Phex) in the mouse. Calcif Tissue Int. 2000 Apr;66(4):282–287. doi: 10.1007/s002230010057. [DOI] [PubMed] [Google Scholar]
  32. Mitchell J. L., Diveley R. R., Jr, Bareyal-Leyser A., Mitchell J. L. Abnormal accumulation and toxicity of polyamines in a difluoromethylornithine-resistant HTC cell variant. Biochim Biophys Acta. 1992 Aug 12;1136(2):136–142. doi: 10.1016/0167-4889(92)90248-a. [DOI] [PubMed] [Google Scholar]
  33. Monti M. G., Ghiaroni S., Pernecco L., Barbieri D., Marverti G., Franceschi C. Polyamine depletion protects HL-60 cells from 2-deoxy-D-ribose-induced apoptosis. Life Sci. 1998;62(9):799–806. doi: 10.1016/s0024-3205(97)01181-8. [DOI] [PubMed] [Google Scholar]
  34. Nilsson J., Gritli-Linde A., Heby O. Skin fibroblasts from spermine synthase-deficient hemizygous gyro male (Gy/Y) mice overproduce spermidine and exhibit increased resistance to oxidative stress but decreased resistance to UV irradiation. Biochem J. 2000 Dec 1;352(Pt 2):381–387. [PMC free article] [PubMed] [Google Scholar]
  35. O'Connor L., Huang D. C., O'Reilly L. A., Strasser A. Apoptosis and cell division. Curr Opin Cell Biol. 2000 Apr;12(2):257–263. doi: 10.1016/s0955-0674(99)00084-8. [DOI] [PubMed] [Google Scholar]
  36. Packham G., Cleveland J. L. Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis. Mol Cell Biol. 1994 Sep;14(9):5741–5747. doi: 10.1128/mcb.14.9.5741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Parchment R. E., Pierce G. B. Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res. 1989 Dec 1;49(23):6680–6686. [PubMed] [Google Scholar]
  38. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  39. Penning L. C., Schipper R. G., Vercammen D., Verhofstad A. A., Denecker T., Beyaert R., Vandenabeele P. Sensitization of tnf-induced apoptosis with polyamine synthesis inhibitors in different human and murine tumour cell lines. Cytokine. 1998 Jun;10(6):423–431. doi: 10.1006/cyto.1997.0310. [DOI] [PubMed] [Google Scholar]
  40. Poulin R., Coward J. K., Lakanen J. R., Pegg A. E. Enhancement of the spermidine uptake system and lethal effects of spermidine overaccumulation in ornithine decarboxylase-overproducing L1210 cells under hyposmotic stress. J Biol Chem. 1993 Mar 5;268(7):4690–4698. [PubMed] [Google Scholar]
  41. Poulin R., Pelletier G., Pegg A. E. Induction of apoptosis by excessive polyamine accumulation in ornithine decarboxylase-overproducing L1210 cells. Biochem J. 1995 Nov 1;311(Pt 3):723–727. doi: 10.1042/bj3110723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ray R. M., Viar M. J., Yuan Q., Johnson L. R. Polyamine depletion delays apoptosis of rat intestinal epithelial cells. Am J Physiol Cell Physiol. 2000 Mar;278(3):C480–C489. doi: 10.1152/ajpcell.2000.278.3.C480. [DOI] [PubMed] [Google Scholar]
  43. Stefanelli C., Bonavita F., Stanic' I., Mignani M., Facchini A., Pignatti C., Flamigni F., Caldarera C. M. Spermine causes caspase activation in leukaemia cells. FEBS Lett. 1998 Oct 23;437(3):233–236. doi: 10.1016/s0014-5793(98)01239-3. [DOI] [PubMed] [Google Scholar]
  44. Stefanelli C., Bonavita F., Stanic' I., Pignatti C., Flamigni F., Guarnieri C., Caldarera C. M. Spermine triggers the activation of caspase-3 in a cell-free model of apoptosis. FEBS Lett. 1999 May 21;451(2):95–98. doi: 10.1016/s0014-5793(99)00549-9. [DOI] [PubMed] [Google Scholar]
  45. Stefanelli C., Bonavita F., Stanic I., Pignatti C., Farruggia G., Masotti L., Guarnieri C., Caldarera C. M. Inhibition of etoposide-induced apoptosis with peptide aldehyde inhibitors of proteasome. Biochem J. 1998 Jun 15;332(Pt 3):661–665. doi: 10.1042/bj3320661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stefanelli C., Carati D., Rossoni C. Separation of N1- and N8-acetylspermidine isomers by reversed-phase column liquid chromatography after derivatization with dansyl chloride. J Chromatogr. 1986 Feb 14;375(1):49–55. doi: 10.1016/s0378-4347(00)83690-7. [DOI] [PubMed] [Google Scholar]
  47. Stefanelli C., Stanic' I., Zini M., Bonavita F., Flamigni F., Zambonin L., Landi L., Pignatti C., Guarnieri C., Caldarera C. M. Polyamines directly induce release of cytochrome c from heart mitochondria. Biochem J. 2000 May 1;347(Pt 3):875–880. [PMC free article] [PubMed] [Google Scholar]
  48. Susin S. A., Daugas E., Ravagnan L., Samejima K., Zamzami N., Loeffler M., Costantini P., Ferri K. F., Irinopoulou T., Prévost M. C. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000 Aug 21;192(4):571–580. doi: 10.1084/jem.192.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
  50. Tobias K. E., Kahana C. Exposure to ornithine results in excessive accumulation of putrescine and apoptotic cell death in ornithine decarboxylase overproducing mouse myeloma cells. Cell Growth Differ. 1995 Oct;6(10):1279–1285. [PubMed] [Google Scholar]
  51. Williams J. R., Casero R. A., Dillehay L. E. The effect of polyamine depletion on the cytotoxic response to PUVA, gamma rays and UVC in V79 cells in vitro. Biochem Biophys Res Commun. 1994 May 30;201(1):1–7. doi: 10.1006/bbrc.1994.1661. [DOI] [PubMed] [Google Scholar]
  52. Xie X., Tome M. E., Gerner E. W. Loss of intracellular putrescine pool-size regulation induces apoptosis. Exp Cell Res. 1997 Feb 1;230(2):386–392. doi: 10.1006/excr.1996.3442. [DOI] [PubMed] [Google Scholar]
  53. Yanagawa K., Yamashita T., Yada K., Ohira M., Ishikawa T., Yano Y., Otani S., Sowa M. The antiproliferative effect of HGF on hepatoma cells involves induction of apoptosis with increase in intracellular polyamine concentration levels. Oncol Rep. 1998 Jan-Feb;5(1):185–190. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES