Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):259–269. doi: 10.1042/0264-6021:3550259

The molecular basis of oculocutaneous albinism type 1 (OCA1): sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation.

K Toyofuku 1, I Wada 1, R A Spritz 1, V J Hearing 1
PMCID: PMC1221735  PMID: 11284711

Abstract

Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disease resulting from mutations of the tyrosinase gene (TYR). To elucidate the molecular basis of OCA1 phenotypes, we analysed the early processing and maturation of several different types of mutant tyrosinase with various degrees of structural abnormalities (i.e. two large deletion mutants, two missense mutants that completely destroy catalytic function and three missense mutants that have a temperature-sensitive phenotype). When expressed in COS7 cells, all mutant tyrosinases were sensitive to endoglycosidase H digestion, and immunostaining showed their localization in the endoplasmic reticulum (ER) and their failure to be sorted further to their target organelles. Pulse-chase experiments showed that all mutant tyrosinases were retained by calnexin in the ER and that they were degraded at similarly rapid rates, which coincided with their dissociation from calnexin. Temperature-sensitive mutant enzymes were sorted more efficiently at 31 degrees C than at 37 degrees C, and their degradation was accelerated at 37 degrees C compared with 31 degrees C. Thus in contrast to the current concept that mutant tyrosinases are transported to melanosomes but are functionally inactive there, our results suggest that mutant tyrosinases may not be transported to melanosomes in the first place. We conclude that a significant component of mutant tyrosinase malfunction in OCA1 results from their retention and degradation in the ER compartment. This quality-control process is highly sensitive to minimal changes in protein folding, and so even relatively minor mutations in peripheral sequences of the enzyme not involved with catalytic activity may result in a significant reduction of functional enzyme in melanosomes.

Full Text

The Full Text of this article is available as a PDF (551.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergeron J. J., Brenner M. B., Thomas D. Y., Williams D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994 Mar;19(3):124–128. doi: 10.1016/0968-0004(94)90205-4. [DOI] [PubMed] [Google Scholar]
  2. Berson J. F., Frank D. W., Calvo P. A., Bieler B. M., Marks M. S. A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature. J Biol Chem. 2000 Apr 21;275(16):12281–12289. doi: 10.1074/jbc.275.16.12281. [DOI] [PubMed] [Google Scholar]
  3. Bouchard B., Fuller B. B., Vijayasaradhi S., Houghton A. N. Induction of pigmentation in mouse fibroblasts by expression of human tyrosinase cDNA. J Exp Med. 1989 Jun 1;169(6):2029–2042. doi: 10.1084/jem.169.6.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branza-Nichita N., Negroiu G., Petrescu A. J., Garman E. F., Platt F. M., Wormald M. R., Dwek R. A., Petrescu S. M. Mutations at critical N-glycosylation sites reduce tyrosinase activity by altering folding and quality control. J Biol Chem. 2000 Mar 17;275(11):8169–8175. doi: 10.1074/jbc.275.11.8169. [DOI] [PubMed] [Google Scholar]
  5. Branza-Nichita N., Petrescu A. J., Dwek R. A., Wormald M. R., Platt F. M., Petrescu S. M. Tyrosinase folding and copper loading in vivo: a crucial role for calnexin and alpha-glucosidase II. Biochem Biophys Res Commun. 1999 Aug 11;261(3):720–725. doi: 10.1006/bbrc.1999.1030. [DOI] [PubMed] [Google Scholar]
  6. Brodsky J. L., McCracken A. A. ER-associated and proteasomemediated protein degradation: how two topologically restricted events came together. Trends Cell Biol. 1997 Apr;7(4):151–156. doi: 10.1016/S0962-8924(97)01020-9. [DOI] [PubMed] [Google Scholar]
  7. Calvo P. A., Frank D. W., Bieler B. M., Berson J. F., Marks M. S. A cytoplasmic sequence in human tyrosinase defines a second class of di-leucine-based sorting signals for late endosomal and lysosomal delivery. J Biol Chem. 1999 Apr 30;274(18):12780–12789. doi: 10.1074/jbc.274.18.12780. [DOI] [PubMed] [Google Scholar]
  8. Chung D. H., Ohashi K., Watanabe M., Miyasaka N., Hirosawa S. Mannose trimming targets mutant alpha(2)-plasmin inhibitor for degradation by the proteasome. J Biol Chem. 2000 Feb 18;275(7):4981–4987. doi: 10.1074/jbc.275.7.4981. [DOI] [PubMed] [Google Scholar]
  9. Diment S., Eidelman M., Rodriguez G. M., Orlow S. J. Lysosomal hydrolases are present in melanosomes and are elevated in melanizing cells. J Biol Chem. 1995 Mar 3;270(9):4213–4215. doi: 10.1074/jbc.270.9.4213. [DOI] [PubMed] [Google Scholar]
  10. Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995 May 5;268(5211):726–731. doi: 10.1126/science.7732382. [DOI] [PubMed] [Google Scholar]
  11. Halaban R., Cheng E., Zhang Y., Moellmann G., Hanlon D., Michalak M., Setaluri V., Hebert D. N. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6210–6215. doi: 10.1073/pnas.94.12.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halaban R., Svedine S., Cheng E., Smicun Y., Aron R., Hebert D. N. Endoplasmic reticulum retention is a common defect associated with tyrosinase-negative albinism. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5889–5894. doi: 10.1073/pnas.97.11.5889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammond C., Braakman I., Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913–917. doi: 10.1073/pnas.91.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ikemoto K., Nagatsu I., Ito S., King R. A., Nishimura A., Nagatsu T. Does tyrosinase exist in neuromelanin-pigmented neurons in the human substantia nigra? Neurosci Lett. 1998 Sep 11;253(3):198–200. doi: 10.1016/s0304-3940(98)00649-1. [DOI] [PubMed] [Google Scholar]
  15. Jakob C. A., Burda P., Roth J., Aebi M. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol. 1998 Sep 7;142(5):1223–1233. doi: 10.1083/jcb.142.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keller S. H., Lindstrom J., Taylor P. Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasome degradation of the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem. 1998 Jul 3;273(27):17064–17072. doi: 10.1074/jbc.273.27.17064. [DOI] [PubMed] [Google Scholar]
  17. King R. A., Mentink M. M., Oetting W. S. Non-random distribution of missense mutations within the human tyrosinase gene in type I (tyrosinase-related) oculocutaneous albinism. Mol Biol Med. 1991 Feb;8(1):19–29. [PubMed] [Google Scholar]
  18. King R. A., Townsend D., Oetting W., Summers C. G., Olds D. P., White J. G., Spritz R. A. Temperature-sensitive tyrosinase associated with peripheral pigmentation in oculocutaneous albinism. J Clin Invest. 1991 Mar;87(3):1046–1053. doi: 10.1172/JCI115064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kobayashi T., Imokawa G., Bennett D. C., Hearing V. J. Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem. 1998 Nov 27;273(48):31801–31805. doi: 10.1074/jbc.273.48.31801. [DOI] [PubMed] [Google Scholar]
  20. Lee D. H., Goldberg A. L. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem. 1996 Nov 1;271(44):27280–27284. doi: 10.1074/jbc.271.44.27280. [DOI] [PubMed] [Google Scholar]
  21. Liao W., Yeung S. C., Chan L. Proteasome-mediated degradation of apolipoprotein B targets both nascent peptides cotranslationally before translocation and full-length apolipoprotein B after translocation into the endoplasmic reticulum. J Biol Chem. 1998 Oct 16;273(42):27225–27230. doi: 10.1074/jbc.273.42.27225. [DOI] [PubMed] [Google Scholar]
  22. Liu Y., Choudhury P., Cabral C. M., Sifers R. N. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem. 1999 Feb 26;274(9):5861–5867. doi: 10.1074/jbc.274.9.5861. [DOI] [PubMed] [Google Scholar]
  23. Lukacs G. L., Mohamed A., Kartner N., Chang X. B., Riordan J. R., Grinstein S. Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 1994 Dec 15;13(24):6076–6086. doi: 10.1002/j.1460-2075.1994.tb06954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oetting W. S., King R. A. Analysis of tyrosinase mutations associated with tyrosinase-related oculocutaneous albinism (OCA1). Pigment Cell Res. 1994 Oct;7(5):285–290. doi: 10.1111/j.1600-0749.1994.tb00629.x. [DOI] [PubMed] [Google Scholar]
  25. Oetting W. S., King R. A. Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat. 1999;13(2):99–115. doi: 10.1002/(SICI)1098-1004(1999)13:2<99::AID-HUMU2>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  26. Orlow S. J. Melanosomes are specialized members of the lysosomal lineage of organelles. J Invest Dermatol. 1995 Jul;105(1):3–7. doi: 10.1111/1523-1747.ep12312291. [DOI] [PubMed] [Google Scholar]
  27. Orlow S. J., Zhou B. K., Chakraborty A. K., Drucker M., Pifko-Hirst S., Pawelek J. M. High-molecular-weight forms of tyrosinase and the tyrosinase-related proteins: evidence for a melanogenic complex. J Invest Dermatol. 1994 Aug;103(2):196–201. doi: 10.1111/1523-1747.ep12392743. [DOI] [PubMed] [Google Scholar]
  28. Ou W. J., Cameron P. H., Thomas D. Y., Bergeron J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 Aug 26;364(6440):771–776. doi: 10.1038/364771a0. [DOI] [PubMed] [Google Scholar]
  29. Payne A. S., Kelly E. J., Gitlin J. D. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10854–10859. doi: 10.1073/pnas.95.18.10854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Petrescu S. M., Branza-Nichita N., Negroiu G., Petrescu A. J., Dwek R. A. Tyrosinase and glycoprotein folding: roles of chaperones that recognize glycans. Biochemistry. 2000 May 9;39(18):5229–5237. doi: 10.1021/bi000107z. [DOI] [PubMed] [Google Scholar]
  31. Petrescu S. M., Petrescu A. J., Titu H. N., Dwek R. A., Platt F. M. Inhibition of N-glycan processing in B16 melanoma cells results in inactivation of tyrosinase but does not prevent its transport to the melanosome. J Biol Chem. 1997 Jun 20;272(25):15796–15803. doi: 10.1074/jbc.272.25.15796. [DOI] [PubMed] [Google Scholar]
  32. Plemper R. K., Böhmler S., Bordallo J., Sommer T., Wolf D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature. 1997 Aug 28;388(6645):891–895. doi: 10.1038/42276. [DOI] [PubMed] [Google Scholar]
  33. Qu D., Teckman J. H., Omura S., Perlmutter D. H. Degradation of a mutant secretory protein, alpha1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem. 1996 Sep 13;271(37):22791–22795. doi: 10.1074/jbc.271.37.22791. [DOI] [PubMed] [Google Scholar]
  34. Simons J. F., Ferro-Novick S., Rose M. D., Helenius A. BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J Cell Biol. 1995 Jul;130(1):41–49. doi: 10.1083/jcb.130.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sousa M., Parodi A. J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 1995 Sep 1;14(17):4196–4203. doi: 10.1002/j.1460-2075.1995.tb00093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sousa M., Parodi A. J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 1995 Sep 1;14(17):4196–4203. doi: 10.1002/j.1460-2075.1995.tb00093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spritz R. A., Hearing V. J., Jr Genetic disorders of pigmentation. Adv Hum Genet. 1994;22:1–45. doi: 10.1007/978-1-4757-9062-7_1. [DOI] [PubMed] [Google Scholar]
  38. Spritz R. A., Ho L., Furumura M., Hearing V. J., Jr Mutational analysis of copper binding by human tyrosinase. J Invest Dermatol. 1997 Aug;109(2):207–212. doi: 10.1111/1523-1747.ep12319351. [DOI] [PubMed] [Google Scholar]
  39. Spritz R. A., Strunk K. M., Giebel L. B., King R. A. Detection of mutations in the tyrosinase gene in a patient with type IA oculocutaneous albinism. N Engl J Med. 1990 Jun 14;322(24):1724–1728. doi: 10.1056/NEJM199006143222407. [DOI] [PubMed] [Google Scholar]
  40. Tatu U., Hammond C., Helenius A. Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J. 1995 Apr 3;14(7):1340–1348. doi: 10.1002/j.1460-2075.1995.tb07120.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Toyofuku K., Wada I., Hirosaki K., Park J. S., Hori Y., Jimbow K. Promotion of tyrosinase folding in COS 7 cells by calnexin. J Biochem. 1999 Jan;125(1):82–89. doi: 10.1093/oxfordjournals.jbchem.a022272. [DOI] [PubMed] [Google Scholar]
  42. Tripathi R. K., Hearing V. J., Urabe K., Aroca P., Spritz R. A. Mutational mapping of the catalytic activities of human tyrosinase. J Biol Chem. 1992 Nov 25;267(33):23707–23712. [PubMed] [Google Scholar]
  43. Wada I., Kai M., Imai S., Sakane F., Kanoh H. Promotion of transferrin folding by cyclic interactions with calnexin and calreticulin. EMBO J. 1997 Sep 1;16(17):5420–5432. doi: 10.1093/emboj/16.17.5420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang Y., Androlewicz M. J. Oligosaccharide trimming plays a role in the endoplasmic reticulum-associated degradation of tyrosinase. Biochem Biophys Res Commun. 2000 Apr 29;271(1):22–27. doi: 10.1006/bbrc.2000.2577. [DOI] [PubMed] [Google Scholar]
  45. Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
  46. Werner E. D., Brodsky J. L., McCracken A. A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13797–13801. doi: 10.1073/pnas.93.24.13797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wiertz E. J., Tortorella D., Bogyo M., Yu J., Mothes W., Jones T. R., Rapoport T. A., Ploegh H. L. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 1996 Dec 5;384(6608):432–438. doi: 10.1038/384432a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES