Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):279–288. doi: 10.1042/0264-6021:3550279

Genomic organization and characterization of splice variants of the human histamine H3 receptor.

F Cogé 1, S P Guénin 1, V Audinot 1, A Renouard-Try 1, P Beauverger 1, C Macia 1, C Ouvry 1, N Nagel 1, H Rique 1, J A Boutin 1, J P Galizzi 1
PMCID: PMC1221737  PMID: 11284713

Abstract

In the present paper we report the genomic organization of the human histamine H3-receptor gene, which consists of four exons spanning 5.5 kb on chromosome 20. Using PCR, six alternative splice variants of the H3 receptor were cloned from human thalamus. These variants were found to be coexpressed in human brain, but their relative distribution varied in a region-specific manner. These isoforms displayed either a deletion in the putative second transmembrane domain (TM), H3(DeltaTM2, 431aa) or a variable deletion in the third intracellular loop (i3), H3(Deltai3, 415aa), H3(Deltai3, 365aa), H3(Deltai3, 329aa) and H3(DeltaTM5+Deltai3, 326aa). In order to determine the biological role of the H3 receptor variants compared with the 'original' H3(445aa) receptor, three isoforms, namely H3(445aa), H3(DeltaTM2, 431aa) and H3(Deltai3, 365aa), were expressed in CHO cells and their pharmacological properties were investigated. Binding studies showed that H3(DeltaTM2, 431aa) transiently expressed in CHO cells was unable to bind [125I]iodoproxyfan, whereas both the H3(445aa) and H3(Deltai3, 365aa) receptors displayed a high affinity for [125I]iodoproxyfan [K(d)=28+/-5 pM (n=4) and 8+/-1 pM (n=5) respectively]. In addition, H3(Deltai3, 365aa) possessed the same pharmacological profile as the H3(445aa) receptor. However, in CHO cells expressing H3(Deltai3, 365aa), H3 agonists did not inhibit forskolin-induced cAMP production, stimulate [35S]guanosine 5'-[gamma-thio]triphosphate ([35S]GTP[S]) binding or stimulate intracellular Ca(2+) mobilization. Therefore the 80-amino-acid sequence located at the C-terminal portion of i3 plays an essential role in H3 agonist-mediated signal transduction. The existence of multiple H3 isoforms with different signal transduction capabilities suggests that H3-mediated biological functions might be tightly regulated through alternative splicing mechanisms.

Full Text

The Full Text of this article is available as a PDF (350.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Arrang J. M., Garbarg M., Schwartz J. C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983 Apr 28;302(5911):832–837. doi: 10.1038/302832a0. [DOI] [PubMed] [Google Scholar]
  3. Blencowe B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci. 2000 Mar;25(3):106–110. doi: 10.1016/s0968-0004(00)01549-8. [DOI] [PubMed] [Google Scholar]
  4. Chan J. S., Lee J. W., Ho M. K., Wong Y. H. Preactivation permits subsequent stimulation of phospholipase C by G(i)-coupled receptors. Mol Pharmacol. 2000 Apr;57(4):700–708. doi: 10.1124/mol.57.4.700. [DOI] [PubMed] [Google Scholar]
  5. Cogé F., Guenin S. P., Renouard-Try A., Rique H., Ouvry C., Fabry N., Beauverger P., Nicolas J. P., Galizzi J. P., Boutin J. A. Truncated isoforms inhibit [3H]prazosin binding and cellular trafficking of native human alpha1A-adrenoceptors. Biochem J. 1999 Oct 1;343(Pt 1):231–239. [PMC free article] [PubMed] [Google Scholar]
  6. De Backer M. D., Loonen I., Verhasselt P., Neefs J. M., Luyten W. H. Structure of the human histamine H1 receptor gene. Biochem J. 1998 Nov 1;335(Pt 3):663–670. doi: 10.1042/bj3350663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giros B., Sokoloff P., Martres M. P., Riou J. F., Emorine L. J., Schwartz J. C. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature. 1989 Dec 21;342(6252):923–926. doi: 10.1038/342923a0. [DOI] [PubMed] [Google Scholar]
  8. Hill S. J., Ganellin C. R., Timmerman H., Schwartz J. C., Shankley N. P., Young J. M., Schunack W., Levi R., Haas H. L. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev. 1997 Sep;49(3):253–278. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Leurs R., Blandina P., Tedford C., Timmerman H. Therapeutic potential of histamine H3 receptor agonists and antagonists. Trends Pharmacol Sci. 1998 May;19(5):177–183. doi: 10.1016/s0165-6147(98)01201-2. [DOI] [PubMed] [Google Scholar]
  11. Leurs R., Kathmann M., Vollinga R. C., Menge W. M., Schlicker E., Timmerman H. Histamine homologues discriminating between two functional H3 receptor assays. Evidence for H3 receptor heterogeneity?. J Pharmacol Exp Ther. 1996 Mar;276(3):1009–1015. [PubMed] [Google Scholar]
  12. Lovenberg T. W., Pyati J., Chang H., Wilson S. J., Erlander M. G. Cloning of rat histamine H(3) receptor reveals distinct species pharmacological profiles. J Pharmacol Exp Ther. 2000 Jun;293(3):771–778. [PubMed] [Google Scholar]
  13. Lovenberg T. W., Roland B. L., Wilson S. J., Jiang X., Pyati J., Huvar A., Jackson M. R., Erlander M. G. Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol. 1999 Jun;55(6):1101–1107. [PubMed] [Google Scholar]
  14. Montmayeur J. P., Guiramand J., Borrelli E. Preferential coupling between dopamine D2 receptors and G-proteins. Mol Endocrinol. 1993 Feb;7(2):161–170. doi: 10.1210/mend.7.2.7682286. [DOI] [PubMed] [Google Scholar]
  15. Murakami H., Sun-Wada G. H., Matsumoto M., Nishi T., Wada Y., Futai M. Human histamine H2 receptor gene: multiple transcription initiation and tissue-specific expression. FEBS Lett. 1999 May 28;451(3):327–331. doi: 10.1016/s0014-5793(99)00618-3. [DOI] [PubMed] [Google Scholar]
  16. Senogles S. E. The D2 dopamine receptor isoforms signal through distinct Gi alpha proteins to inhibit adenylyl cyclase. A study with site-directed mutant Gi alpha proteins. J Biol Chem. 1994 Sep 16;269(37):23120–23127. [PubMed] [Google Scholar]
  17. Tardivel-Lacombe J., Rouleau A., Héron A., Morisset S., Pillot C., Cochois V., Schwartz J. C., Arrang J. M. Cloning and cerebral expression of the guinea pig histamine H3 receptor: evidence for two isoforms. Neuroreport. 2000 Mar 20;11(4):755–759. doi: 10.1097/00001756-200003200-00020. [DOI] [PubMed] [Google Scholar]
  18. West R. E., Jr, Zweig A., Shih N. Y., Siegel M. I., Egan R. W., Clark M. A. Identification of two H3-histamine receptor subtypes. Mol Pharmacol. 1990 Nov;38(5):610–613. [PubMed] [Google Scholar]
  19. White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., Barnes A. A., Emson P., Foord S. M., Marshall F. H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature. 1998 Dec 17;396(6712):679–682. doi: 10.1038/25354. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES