Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):333–338. doi: 10.1042/0264-6021:3550333

Mechanism of malarial haem detoxification inhibition by chloroquine.

A V Pandey 1, H Bisht 1, V K Babbarwal 1, J Srivastava 1, K C Pandey 1, V S Chauhan 1
PMCID: PMC1221743  PMID: 11284719

Abstract

The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite.

Full Text

The Full Text of this article is available as a PDF (146.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanian D., Mohan Rao C., Panijpan B. The malaria parasite monitored by photoacoustic spectroscopy. Science. 1984 Feb 24;223(4638):828–830. doi: 10.1126/science.6695185. [DOI] [PubMed] [Google Scholar]
  2. Blauer G., Akkawi M. On the preparation of beta-haematin. Biochem J. 2000 Mar 1;346(Pt 2):249–250. [PMC free article] [PubMed] [Google Scholar]
  3. Choi C. Y., Cerda J. F., Chu H. A., Babcock G. T., Marletta M. A. Spectroscopic characterization of the heme-binding sites in Plasmodium falciparum histidine-rich protein 2. Biochemistry. 1999 Dec 21;38(51):16916–16924. doi: 10.1021/bi991665k. [DOI] [PubMed] [Google Scholar]
  4. Chou A. C., Chevli R., Fitch C. D. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry. 1980 Apr 15;19(8):1543–1549. doi: 10.1021/bi00549a600. [DOI] [PubMed] [Google Scholar]
  5. Chou A. C., Fitch C. D. Control of heme polymerase by chloroquine and other quinoline derivatives. Biochem Biophys Res Commun. 1993 Aug 31;195(1):422–427. doi: 10.1006/bbrc.1993.2060. [DOI] [PubMed] [Google Scholar]
  6. Chou A. C., Fitch C. D. Heme polymerase: modulation by chloroquine treatment of a rodent malaria. Life Sci. 1992;51(26):2073–2078. doi: 10.1016/0024-3205(92)90158-l. [DOI] [PubMed] [Google Scholar]
  7. Dixon M. The graphical determination of K m and K i . Biochem J. 1972 Aug;129(1):197–202. doi: 10.1042/bj1290197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dorn A., Stoffel R., Matile H., Bubendorf A., Ridley R. G. Malarial haemozoin/beta-haematin supports haem polymerization in the absence of protein. Nature. 1995 Mar 16;374(6519):269–271. doi: 10.1038/374269a0. [DOI] [PubMed] [Google Scholar]
  9. Egan T. J., Hunter R., Kaschula C. H., Marques H. M., Misplon A., Walden J. Structure-function relationships in aminoquinolines: effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of beta-hematin formation, and antiplasmodial activity. J Med Chem. 2000 Jan 27;43(2):283–291. doi: 10.1021/jm990437l. [DOI] [PubMed] [Google Scholar]
  10. Egan T. J., Ross D. C., Adams P. A. Quinoline anti-malarial drugs inhibit spontaneous formation of beta-haematin (malaria pigment). FEBS Lett. 1994 Sep 19;352(1):54–57. doi: 10.1016/0014-5793(94)00921-x. [DOI] [PubMed] [Google Scholar]
  11. Foley M., Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998 Jul;79(1):55–87. doi: 10.1016/s0163-7258(98)00012-6. [DOI] [PubMed] [Google Scholar]
  12. Ginsburg H., Famin O., Zhang J., Krugliak M. Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol. 1998 Nov 15;56(10):1305–1313. doi: 10.1016/s0006-2952(98)00184-1. [DOI] [PubMed] [Google Scholar]
  13. Hedlund P. B., von Euler G. EasyBound--a user-friendly approach to nonlinear regression analysis of binding data. Comput Methods Programs Biomed. 1999 Mar;58(3):245–249. doi: 10.1016/s0169-2607(98)00087-x. [DOI] [PubMed] [Google Scholar]
  14. Homewood C. A., Warhurst D. C., Peters W., Baggaley V. C. Lysosomes, pH and the anti-malarial action of chloroquine. Nature. 1972 Jan 7;235(5332):50–52. doi: 10.1038/235050a0. [DOI] [PubMed] [Google Scholar]
  15. Ignatushchenko M. V., Winter R. W., Riscoe M. Xanthones as antimalarial agents: stage specificity. Am J Trop Med Hyg. 2000 Jan;62(1):77–81. doi: 10.4269/ajtmh.2000.62.77. [DOI] [PubMed] [Google Scholar]
  16. Loria P., Miller S., Foley M., Tilley L. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J. 1999 Apr 15;339(Pt 2):363–370. [PMC free article] [PubMed] [Google Scholar]
  17. Macomber P. B., Sprinz H. Morphological effects of chloroquine on Plasmodium berghei in mice. Nature. 1967 May 27;214(5091):937–939. doi: 10.1038/214937a0. [DOI] [PubMed] [Google Scholar]
  18. Orjih A. U., Banyal H. S., Chevli R., Fitch C. D. Hemin lyses malaria parasites. Science. 1981 Nov 6;214(4521):667–669. doi: 10.1126/science.7027441. [DOI] [PubMed] [Google Scholar]
  19. Padmanaban G., Rangarajan P. N. Heme metabolism of Plasmodium is a major antimalarial target. Biochem Biophys Res Commun. 2000 Feb 24;268(3):665–668. doi: 10.1006/bbrc.1999.1892. [DOI] [PubMed] [Google Scholar]
  20. Pandey A. V., Joshi R., Tekwani B. L., Singh R. L., Chauhan V. S. Synthetic peptides corresponding to a repetitive sequence of malarial histidine rich protein bind haem and inhibit haemozoin formation in vitro. Mol Biochem Parasitol. 1997 Dec 1;90(1):281–287. doi: 10.1016/s0166-6851(97)00161-8. [DOI] [PubMed] [Google Scholar]
  21. Pandey A. V., Singh N., Tekwani B. L., Puri S. K., Chauhan V. S. Assay of beta-hematin formation by malaria parasite. J Pharm Biomed Anal. 1999 Jun;20(1-2):203–207. doi: 10.1016/s0731-7085(99)00021-7. [DOI] [PubMed] [Google Scholar]
  22. Pandey A. V., Tekwani B. L. Formation of haemozoin/beta-haematin under physiological conditions is not spontaneous. FEBS Lett. 1996 Sep 16;393(2-3):189–193. doi: 10.1016/0014-5793(96)00881-2. [DOI] [PubMed] [Google Scholar]
  23. Pandey A. V., Tekwani B. L., Singh R. L., Chauhan V. S. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem. 1999 Jul 2;274(27):19383–19388. doi: 10.1074/jbc.274.27.19383. [DOI] [PubMed] [Google Scholar]
  24. Raynes K. J., Stocks P. A., O'Neill P. M., Park B. K., Ward S. A. New 4-aminoquinoline Mannich base antimalarials. 1. Effect of an alkyl substituent in the 5'-position of the 4'-hydroxyanilino side chain. J Med Chem. 1999 Jul 29;42(15):2747–2751. doi: 10.1021/jm9901374. [DOI] [PubMed] [Google Scholar]
  25. Shenai B. R., Sijwali P. S., Singh A., Rosenthal P. J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000 Sep 15;275(37):29000–29010. doi: 10.1074/jbc.M004459200. [DOI] [PubMed] [Google Scholar]
  26. Slater A. F., Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature. 1992 Jan 9;355(6356):167–169. doi: 10.1038/355167a0. [DOI] [PubMed] [Google Scholar]
  27. Stoscheck C. M. Quantitation of protein. Methods Enzymol. 1990;182:50–68. doi: 10.1016/0076-6879(90)82008-p. [DOI] [PubMed] [Google Scholar]
  28. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  29. Sullivan D. J., Jr, Gluzman I. Y., Goldberg D. E. Plasmodium hemozoin formation mediated by histidine-rich proteins. Science. 1996 Jan 12;271(5246):219–222. doi: 10.1126/science.271.5246.219. [DOI] [PubMed] [Google Scholar]
  30. Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
  31. Wellems T. E., Howard R. J. Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6065–6069. doi: 10.1073/pnas.83.16.6065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wellems T. E. Malaria. How chloroquine works. Nature. 1992 Jan 9;355(6356):108–109. doi: 10.1038/355108a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES