Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):339–346. doi: 10.1042/0264-6021:3550339

Cloning and rational mutagenesis of kexstatin I, a potent proteinaceous inhibitor of Kex2 proteinase.

K Oda 1, H Oyama 1, S Ito 1, M Fukiharu 1, Y Miyagawa 1, S Takahashi 1, M Hirose 1, N Kikuchi 1, T Nakayama 1, Y Shibano 1
PMCID: PMC1221744  PMID: 11284720

Abstract

Kexstatin I is a potent proteinaceous inhibitor of Kex2 proteinase (EC 3.4.21.61). In the present study we show the molecular cloning, primary structure determination and expression of the gene encoding kexstatin I. We also demonstrate its enhanced activity and specificity for Kex2 proteinase inhibition by rational mutagenesis. The cloned kexstatin I gene encoded a protein of 145 amino acid residues, including the 35-residue signal sequence for secretion. The amino acid sequence showed 52% identity with those of the Streptomyces subtilisin inhibitors (SSIs). Thus kexstatin I is the first SSI-family member that can inhibit Kex2 proteinase. The reactive site of the inhibitor was determined to be -Thr(69)-Lys(70) downward arrowGlu(71)-, where downward arrow indicates the reactive site. Because Kex2 proteinase generally shows the highest affinity for substrates with basic amino acid residues at the P(1) and P(2) sites, conversion of the Thr(69)-Lys(70) segment of the inhibitor into dibasic motifs was expected to result in enhanced inhibitory activities. Thus we constructed kexstatin I mutants, in which the Thr(69)-Lys(70) sequence was replaced by the Thr(69)-Arg(70), Lys(69)-Lys(70) and Lys(69)-Arg(70) sequences using PCR-based mutagenesis, and analysed them kinetically. Among these mutants, the Lys(69)-Arg(70) mutant was the most potent inhibitor. The K(i) for Kex2 proteinase was 3.2x10(-10) M, which was 140-fold lower than that of the inhibitor with the Thr(69)-Lys(70) sequence. Although kexstatin I could also inhibit subtilisin, the enhancement of inhibitory activity upon such mutations was specific for Kex2 proteinase inhibition.

Full Text

The Full Text of this article is available as a PDF (232.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan A., Brenner C., Fuller R. S. Quantitative assessment of enzyme specificity in vivo: P2 recognition by Kex2 protease defined in a genetic system. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10384–10389. doi: 10.1073/pnas.95.18.10384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyd D., Beckwith J. The role of charged amino acids in the localization of secreted and membrane proteins. Cell. 1990 Sep 21;62(6):1031–1033. doi: 10.1016/0092-8674(90)90378-r. [DOI] [PubMed] [Google Scholar]
  3. Brenner C., Fuller R. S. Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):922–926. doi: 10.1073/pnas.89.3.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burkhart W. A., Moyer M. B., Bailey J. M., Miller C. G. Electroblotting of proteins to Teflon tape and membranes for N- and C-terminal sequence analysis. Anal Biochem. 1996 May 1;236(2):364–367. doi: 10.1006/abio.1996.0184. [DOI] [PubMed] [Google Scholar]
  5. Day R., Schafer M. K., Cullinan W. E., Watson S. J., Chrétien M., Seidah N. G. Region specific expression of furin mRNA in the rat brain. Neurosci Lett. 1993 Jan 4;149(1):27–30. doi: 10.1016/0304-3940(93)90339-m. [DOI] [PubMed] [Google Scholar]
  6. Fuller R. S., Brake A. J., Thorner J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science. 1989 Oct 27;246(4929):482–486. doi: 10.1126/science.2683070. [DOI] [PubMed] [Google Scholar]
  7. Fuller R. S., Sterne R. E., Thorner J. Enzymes required for yeast prohormone processing. Annu Rev Physiol. 1988;50:345–362. doi: 10.1146/annurev.ph.50.030188.002021. [DOI] [PubMed] [Google Scholar]
  8. Ikenaka T., Odani S., Sakai M., Nabeshima Y., Sato S., Murao S. Amino acid sequence of an alkaline proteinase inhibitor (Streptomyces subtilisin inhibitor) from Streptomyces albogriseolus S-3253. J Biochem. 1974 Dec;76(6):1191–1209. doi: 10.1093/oxfordjournals.jbchem.a130672. [DOI] [PubMed] [Google Scholar]
  9. Inouye K., Tonomura B., Hiromi K., Sato S., Murao S. The stoichiometry of inhibition and binding of a protein proteinase inhibitor from Streptomyces (Streptomyces subtilisin inhibitor) against subtilisin BPN'1. J Biochem. 1977 Oct;82(4):961–967. doi: 10.1093/oxfordjournals.jbchem.a131800. [DOI] [PubMed] [Google Scholar]
  10. Kojima S., Obata S., Kumagai I., Miura K. Alteration of the specificity of the Streptomyces subtilisin inhibitor by gene engineering. Biotechnology (N Y) 1990 May;8(5):449–452. doi: 10.1038/nbt0590-449. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  13. Mizuno K., Nakamura T., Ohshima T., Tanaka S., Matsuo H. Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1989 Feb 28;159(1):305–311. doi: 10.1016/0006-291x(89)92438-8. [DOI] [PubMed] [Google Scholar]
  14. Mizuno K., Nakamura T., Ohshima T., Tanaka S., Matsuo H. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun. 1988 Oct 14;156(1):246–254. doi: 10.1016/s0006-291x(88)80832-5. [DOI] [PubMed] [Google Scholar]
  15. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nonaka T., Suzuki T., Tanaka N., Saito S., Senda T., Miura K., Mitsui Y. Structure and function of subtilisin BPN' as studied through crystallographic studies on a series of its complexes with genetically engineered proteinaceous inhibitor SSI. Adv Exp Med Biol. 1996;379:21–27. doi: 10.1007/978-1-4613-0319-0_4. [DOI] [PubMed] [Google Scholar]
  17. Obata S., Furukubo S., Kumagai I., Takahashi H., Miura K. High-level expression in Streptomyces lividans 66 of a gene encoding Streptomyces subtilisin inhibitor from Streptomyces albogriseolus S-3253. J Biochem. 1989 Mar;105(3):372–376. doi: 10.1093/oxfordjournals.jbchem.a122671. [DOI] [PubMed] [Google Scholar]
  18. Oda K., Takahashi S., Kikuchi N., Shibano Y. A novel proteinaceous Kex 2 proteinase inhibitor, kexstatin, from Streptomyces platensis Q268. Biosci Biotechnol Biochem. 1996 Aug;60(8):1388–1389. doi: 10.1271/bbb.60.1388. [DOI] [PubMed] [Google Scholar]
  19. Omichi K., Nagura N., Ikenaka T. The reactive site of Streptomyces subtilisin inhibitor. J Biochem. 1980 Feb;87(2):483–489. doi: 10.1093/oxfordjournals.jbchem.a132768. [DOI] [PubMed] [Google Scholar]
  20. Rockwell N. C., Fuller R. S. Interplay between S1 and S4 subsites in Kex2 protease: Kex2 exhibits dual specificity for the P4 side chain. Biochemistry. 1998 Mar 10;37(10):3386–3391. doi: 10.1021/bi972534r. [DOI] [PubMed] [Google Scholar]
  21. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  22. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  23. Strickler J. E., Berka T. R., Gorniak J., Fornwald J., Keys R., Rowland J. J., Rosenberg M., Taylor D. P. Two novel Streptomyces protein protease inhibitors. Purification, activity, cloning, and expression. J Biol Chem. 1992 Feb 15;267(5):3236–3241. [PubMed] [Google Scholar]
  24. Taguchi S., Yoshida Y., Matsumoto K., Momose H. Improved leader and putative terminator sequences for high-level production of Streptomyces subtilisin inhibitor in Escherichia coli. Appl Microbiol Biotechnol. 1993 Aug;39(6):732–737. doi: 10.1007/BF00164458. [DOI] [PubMed] [Google Scholar]
  25. Terabe M., Kojima S., Taguchi S., Momose H., Miura K. A subtilisin inhibitor produced by Streptomyces bikiniensis possesses a glutamine residue at reactive site P1. J Biochem. 1995 Mar;117(3):609–613. doi: 10.1093/oxfordjournals.jbchem.a124752. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES