Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):431–435. doi: 10.1042/0264-6021:3550431

Identification and characterization of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from the Gram-positive pathogen Streptococcus pneumoniae.

D R Sylvester 1, E Alvarez 1, A Patel 1, K Ratnam 1, H Kallender 1, N G Wallis 1
PMCID: PMC1221755  PMID: 11284731

Abstract

The UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from a Gram-positive pathogen, Streptococcus pneumoniae, was identified and characterized. The enzyme from S. pneumoniae shows 31% identity with the MurB protein from Escherichia coli, and contains the catalytic residues, substrate-binding residues and FAD-binding motif identified previously in the E. coli protein. The gene was cloned into the pET28a+ expression vector, and the 34.5 kDa protein that it encodes was overexpressed in E. coli strain BL21(DE3) to 30% of total cell protein. The majority of the protein was found to be insoluble. A variety of methods were used to increase the amount of soluble protein to 10%. This was then purified to near homogeneity in a two-step process. The absorption spectrum of the purified protein indicated it to be a flavoprotein, like its E. coli homologue, with a characteristic absorption at 463 nm. The enzyme was shown to be active, reducing UDP-N-acetylglucosamine enolpyruvate with the concomitant oxidation of NADPH, and was characterized kinetically with respect to its two substrates. The enzyme showed properties similar to those of its E. coli counterpart, being activated by univalent cations and being subject to substrate inhibition. The characterization of an important cell wall biosynthesis enzyme from a Gram-positive pathogen provides a good starting point for the discovery of antibacterial agents against MurB.

Full Text

The Full Text of this article is available as a PDF (137.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benson T. E., Filman D. J., Walsh C. T., Hogle J. M. An enzyme-substrate complex involved in bacterial cell wall biosynthesis. Nat Struct Biol. 1995 Aug;2(8):644–653. doi: 10.1038/nsb0895-644. [DOI] [PubMed] [Google Scholar]
  3. Benson T. E., Marquardt J. L., Marquardt A. C., Etzkorn F. A., Walsh C. T. Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry. 1993 Mar 2;32(8):2024–2030. doi: 10.1021/bi00059a019. [DOI] [PubMed] [Google Scholar]
  4. Benson T. E., Walsh C. T., Hogle J. M. The structure of the substrate-free form of MurB, an essential enzyme for the synthesis of bacterial cell walls. Structure. 1996 Jan 15;4(1):47–54. doi: 10.1016/s0969-2126(96)00008-1. [DOI] [PubMed] [Google Scholar]
  5. Benson T. E., Walsh C. T., Hogle J. M. X-ray crystal structures of the S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine at 1.8-A resolution. Biochemistry. 1997 Jan 28;36(4):806–811. doi: 10.1021/bi962221g. [DOI] [PubMed] [Google Scholar]
  6. Benson T. E., Walsh C. T., Massey V. Kinetic characterization of wild-type and S229A mutant MurB: evidence for the role of Ser 229 as a general acid. Biochemistry. 1997 Jan 28;36(4):796–805. doi: 10.1021/bi962220o. [DOI] [PubMed] [Google Scholar]
  7. Bugg T. D., Walsh C. T. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep. 1992 Jun;9(3):199–215. doi: 10.1039/np9920900199. [DOI] [PubMed] [Google Scholar]
  8. Constantine K. L., Mueller L., Goldfarb V., Wittekind M., Metzler W. J., Yanchunas J., Jr, Robertson J. G., Malley M. F., Friedrichs M. S., Farmer B. T., 2nd Characterization of NADP+ binding to perdeuterated MurB: backbone atom NMR assignments and chemical-shift changes. J Mol Biol. 1997 Apr 18;267(5):1223–1246. doi: 10.1006/jmbi.1997.0915. [DOI] [PubMed] [Google Scholar]
  9. Dhalla A. M., Yanchunas J., Jr, Ho H. T., Falk P. J., Villafranca J. J., Robertson J. G. Steady-state kinetic mechanism of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry. 1995 Apr 25;34(16):5390–5402. doi: 10.1021/bi00016a010. [DOI] [PubMed] [Google Scholar]
  10. Dombrosky P. M., Schmid M. B., Young K. D. Sequence divergence of the murB and rrfB genes from Escherichia coli and Salmonella typhimurium. Arch Microbiol. 1994;161(6):501–507. doi: 10.1007/BF00307771. [DOI] [PubMed] [Google Scholar]
  11. Du W., Brown J. R., Sylvester D. R., Huang J., Chalker A. F., So C. Y., Holmes D. J., Payne D. J., Wallis N. G. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria. J Bacteriol. 2000 Aug;182(15):4146–4152. doi: 10.1128/jb.182.15.4146-4152.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Farmer B. T., 2nd, Constantine K. L., Goldfarb V., Friedrichs M. S., Wittekind M., Yanchunas J., Jr, Robertson J. G., Mueller L. Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat Struct Biol. 1996 Dec;3(12):995–997. doi: 10.1038/nsb1296-995. [DOI] [PubMed] [Google Scholar]
  13. Kahan F. M., Kahan J. S., Cassidy P. J., Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974 May 10;235(0):364–386. doi: 10.1111/j.1749-6632.1974.tb43277.x. [DOI] [PubMed] [Google Scholar]
  14. Massidda O., Anderluzzi D., Friedli L., Feger G. Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. Microbiology. 1998 Nov;144(Pt 11):3069–3078. doi: 10.1099/00221287-144-11-3069. [DOI] [PubMed] [Google Scholar]
  15. Pucci M. J., Discotto L. F., Dougherty T. J. Cloning and identification of the Escherichia coli murB DNA sequence, which encodes UDP-N-acetylenolpyruvoylglucosamine reductase. J Bacteriol. 1992 Mar;174(5):1690–1693. doi: 10.1128/jb.174.5.1690-1693.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pucci M. J., Thanassi J. A., Discotto L. F., Kessler R. E., Dougherty T. J. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J Bacteriol. 1997 Sep;179(17):5632–5635. doi: 10.1128/jb.179.17.5632-5635.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rowland S. L., Errington J., Wake R. G. The Bacillus subtilis cell-division 135-137 degrees region contains an essential orf with significant similarity to murB and a dispensable sbp gene. Gene. 1995 Oct 16;164(1):113–116. doi: 10.1016/0378-1119(95)00467-k. [DOI] [PubMed] [Google Scholar]
  18. Taku A., Anwar R. A. Biosynthesis of uridine diphospho-N-acetylmuramic acid. IV. Activation of uridine diphospho-N-acetylenolpyruvylglucosamine reductase by monovalent cations. J Biol Chem. 1973 Jul 25;248(14):4971–4976. [PubMed] [Google Scholar]
  19. Tayeh M. A., Dotson G. D., Clemens J. C., Woodard R. W. Overproduction and one-step purification of Escherichia coli UDP-N-acetylglucosamine enolpyruvyl reductase. Protein Expr Purif. 1995 Dec;6(6):757–762. doi: 10.1006/prep.1995.0006. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES