Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):473–479. doi: 10.1042/0264-6021:3550473

Influence of metallothionein-1 localization on its function.

M Levadoux-Martin 1, J E Hesketh 1, J H Beattie 1, H M Wallace 1
PMCID: PMC1221760  PMID: 11284736

Abstract

Metallothioneins (MTs) have a major role to play in metal metabolism, and may also protect DNA against oxidative damage. MT protein has been found localized in the nucleus during S-phase. The mRNA encoding the MT-1 isoform has a perinuclear localization, and is associated with the cytoskeleton; this targeting, due to signals within the 3'-untranslated region (3'-UTR), facilitates nuclear localization of MT-1 during S-phase [Levadoux, Mahon, Beattie, Wallace and Hesketh (1999) J. Biol. Chem. 274, 34961-34966]. Using cells transfected with MT gene constructs differing in their 3'-UTRs, the role of MT protein in the nucleus has been studied. Chinese hamster ovary cells were transfected with either the full MT gene (MTMT cells) or with the MT 5'-UTR and coding region linked to the 3'-UTR of glutathione peroxidase (MTGSH cells). Cell survival following exposure to oxidative stress and chemical agents was higher in cells expressing the native MT gene than in cells where MT localization was disrupted, or in untransfected cells. Also, MTMT cells showed less DNA damage than MTGSH cells in response to either hydrogen peroxide or mutagen. After exposure to UV light or mutagen, MTMT cells showed less apoptosis than MTGSH cells, as assessed by DNA fragmentation and flow cytometry. The data indicate that the perinuclear localization of MT mRNA is important for the function of MT in a protective role against DNA damage and apoptosis induced by external stress.

Full Text

The Full Text of this article is available as a PDF (149.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostolova M. D., Ivanova I. A., Cherian M. G. Metallothionein and apoptosis during differentiation of myoblasts to myotubes: protection against free radical toxicity. Toxicol Appl Pharmacol. 1999 Sep 15;159(3):175–184. doi: 10.1006/taap.1999.8755. [DOI] [PubMed] [Google Scholar]
  2. Apostolova M. D., Ivanova I. A., Cherian M. G. Signal transduction pathways, and nuclear translocation of zinc and metallothionein during differentiation of myoblasts. Biochem Cell Biol. 2000;78(1):27–37. [PubMed] [Google Scholar]
  3. Bassell G. J., Powers C. M., Taneja K. L., Singer R. H. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol. 1994 Aug;126(4):863–876. doi: 10.1083/jcb.126.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bermano G., Arthur J. R., Hesketh J. E. Role of the 3' untranslated region in the regulation of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase gene expression by selenium supply. Biochem J. 1996 Dec 15;320(Pt 3):891–895. doi: 10.1042/bj3200891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bird R. C., Sells B. H. Cytoskeleton involvement in the distribution of mRNP complexes and small cytoplasmic RNAs. Biochim Biophys Acta. 1986 Dec 18;868(4):215–225. doi: 10.1016/0167-4781(86)90057-6. [DOI] [PubMed] [Google Scholar]
  6. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell G. P., Hesketh J. E. Distribution of glutathione peroxidase mRNAs between free and cytoskeletal-bound polysomes in H4 hepatoma cells. Biochem Soc Trans. 1996 May;24(2):189S–189S. doi: 10.1042/bst024189s. [DOI] [PubMed] [Google Scholar]
  8. Collins A. R., Ma A. G., Duthie S. J. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res. 1995 Jan;336(1):69–77. doi: 10.1016/0921-8777(94)00043-6. [DOI] [PubMed] [Google Scholar]
  9. Hesketh J. E. Sorting of messenger RNAs in the cytoplasm: mRNA localization and the cytoskeleton. Exp Cell Res. 1996 Jun 15;225(2):219–236. doi: 10.1006/excr.1996.0172. [DOI] [PubMed] [Google Scholar]
  10. Hesketh J., Campbell G., Piechaczyk M., Blanchard J. M. Targeting of c-myc and beta-globin coding sequences to cytoskeletal-bound polysomes by c-myc 3' untranslated region. Biochem J. 1994 Feb 15;298(Pt 1):143–148. doi: 10.1042/bj2980143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horváthová E., Slamenová D., Hlincíková L., Mandal T. K., Gábelová A., Collins A. R. The nature and origin of DNA single-strand breaks determined with the comet assay. Mutat Res. 1998 Dec 14;409(3):163–171. doi: 10.1016/s0921-8777(98)00053-6. [DOI] [PubMed] [Google Scholar]
  12. Hovland R., Campbell G., Pryme I., Hesketh J. The mRNAs for cyclin A, c-myc and ribosomal proteins L4 and S6 are associated with cytoskeletal-bound polysomes in HepG2 cells. Biochem J. 1995 Aug 15;310(Pt 1):193–196. doi: 10.1042/bj3100193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jansen R. P. RNA-cytoskeletal associations. FASEB J. 1999 Mar;13(3):455–466. [PubMed] [Google Scholar]
  14. Kurzchalia T. V., Wiedmann M., Girshovich A. S., Bochkareva E. S., Bielka H., Rapoport T. A. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. Nature. 1986 Apr 17;320(6063):634–636. doi: 10.1038/320634a0. [DOI] [PubMed] [Google Scholar]
  15. Levadoux M., Mahon C., Beattie J. H., Wallace H. M., Hesketh J. E. Nuclear import of metallothionein requires its mRNA to be associated with the perinuclear cytoskeleton. J Biol Chem. 1999 Dec 3;274(49):34961–34966. doi: 10.1074/jbc.274.49.34961. [DOI] [PubMed] [Google Scholar]
  16. Mahon P., Beattie J., Glover L. A., Hesketh J. Localisation of metallothionein isoform mRNAs in rat hepatoma (H4) cells. FEBS Lett. 1995 Oct 2;373(1):76–80. doi: 10.1016/0014-5793(95)01000-5. [DOI] [PubMed] [Google Scholar]
  17. Mahon P., Partridge K., Beattie J. H., Glover L. A., Hesketh J. E. The 3' untranslated region plays a role in the targeting of metallothionein-I mRNA to the perinuclear cytoplasm and cytoskeletal-bound polysomes. Biochim Biophys Acta. 1997 Sep 11;1358(2):153–162. doi: 10.1016/s0167-4889(97)00058-x. [DOI] [PubMed] [Google Scholar]
  18. Miles A. T., Hawksworth G. M., Beattie J. H., Rodilla V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol. 2000;35(1):35–70. doi: 10.1080/10409230091169168. [DOI] [PubMed] [Google Scholar]
  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  20. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  21. Panemangalore M., Banerjee D., Onosaka S., Cherian M. G. Changes in the intracellular accumulation and distribution of metallothionein in rat liver and kidney during postnatal development. Dev Biol. 1983 May;97(1):95–102. doi: 10.1016/0012-1606(83)90067-2. [DOI] [PubMed] [Google Scholar]
  22. Silver P. A. How proteins enter the nucleus. Cell. 1991 Feb 8;64(3):489–497. doi: 10.1016/0092-8674(91)90233-o. [DOI] [PubMed] [Google Scholar]
  23. Taneja K. L., Lifshitz L. M., Fay F. S., Singer R. H. Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy. J Cell Biol. 1992 Dec;119(5):1245–1260. doi: 10.1083/jcb.119.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tsujikawa K., Imai T., Kakutani M., Kayamori Y., Mimura T., Otaki N., Kimura M., Fukuyama R., Shimizu N. Localization of metallothionein in nuclei of growing primary cultured adult rat hepatocytes. FEBS Lett. 1991 Jun 3;283(2):239–242. doi: 10.1016/0014-5793(91)80597-v. [DOI] [PubMed] [Google Scholar]
  25. Veyrune J. L., Campbell G. P., Wiseman J., Blanchard J. M., Hesketh J. E. A localisation signal in the 3' untranslated region of c-myc mRNA targets c-myc mRNA and beta-globin reporter sequences to the perinuclear cytoplasm and cytoskeletal-bound polysomes. J Cell Sci. 1996 Jun;109(Pt 6):1185–1194. doi: 10.1242/jcs.109.6.1185. [DOI] [PubMed] [Google Scholar]
  26. Woo E. S., Lazo J. S. Nucleocytoplasmic functionality of metallothionein. Cancer Res. 1997 Oct 1;57(19):4236–4241. [PubMed] [Google Scholar]
  27. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  28. Zheng H., Liu J., Liu Y., Klaassen C. D. Hepatocytes from metallothionein-I and II knock-out mice are sensitive to cadmium- and tert-butylhydroperoxide-induced cytotoxicity. Toxicol Lett. 1996 Oct;87(2-3):139–145. doi: 10.1016/0378-4274(96)03770-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES