Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):489–497. doi: 10.1042/0264-6021:3550489

Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor.

J Munday 1, S Kerr 1, J Ni 1, A L Cornish 1, J Q Zhang 1, G Nicoll 1, H Floyd 1, M G Mattei 1, P Moore 1, D Liu 1, P R Crocker 1
PMCID: PMC1221762  PMID: 11284738

Abstract

Here we characterize Siglec-10 as a new member of the Siglec family of sialic acid-binding Ig-like lectins. A full-length cDNA was isolated from a human spleen library and the corresponding gene identified. Siglec-10 is predicted to contain five extracellular Ig-like domains and a cytoplasmic tail containing three putative tyrosine-based signalling motifs. Siglec-10 exhibited a high degree of sequence similarity to CD33-related Siglecs and mapped to the same region, on chromosome 19q13.3. The expressed protein was able to mediate sialic acid-dependent binding to human erythrocytes and soluble sialoglycoconjugates. Using specific antibodies, Siglec-10 was detected on subsets of human leucocytes including eosinophils, monocytes and a minor population of natural killer-like cells. The molecular properties and expression pattern suggest that Siglec-10 may function as an inhibitory receptor within the innate immune system.

Full Text

The Full Text of this article is available as a PDF (414.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angata T., Varki A. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J Biol Chem. 2000 Jul 21;275(29):22127–22135. doi: 10.1074/jbc.M002775200. [DOI] [PubMed] [Google Scholar]
  2. Angata T., Varki A. Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily. Glycobiology. 2000 Apr;10(4):431–438. doi: 10.1093/glycob/10.4.431. [DOI] [PubMed] [Google Scholar]
  3. Braesch-Andersen S., Stamenkovic I. Sialylation of the B lymphocyte molecule CD22 by alpha 2,6-sialyltransferase is implicated in the regulation of CD22-mediated adhesion. J Biol Chem. 1994 Apr 22;269(16):11783–11786. [PubMed] [Google Scholar]
  4. Buday L., Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 1993 May 7;73(3):611–620. doi: 10.1016/0092-8674(93)90146-h. [DOI] [PubMed] [Google Scholar]
  5. Cornish A. L., Freeman S., Forbes G., Ni J., Zhang M., Cepeda M., Gentz R., Augustus M., Carter K. C., Crocker P. R. Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood. 1998 Sep 15;92(6):2123–2132. [PubMed] [Google Scholar]
  6. Crocker P. R., Clark E. A., Filbin M., Gordon S., Jones Y., Kehrl J. H., Kelm S., Le Douarin N., Powell L., Roder J. Siglecs: a family of sialic-acid binding lectins. Glycobiology. 1998 Feb;8(2):v–v. doi: 10.1093/oxfordjournals.glycob.a018832. [DOI] [PubMed] [Google Scholar]
  7. Crocker P. R., Mucklow S., Bouckson V., McWilliam A., Willis A. C., Gordon S., Milon G., Kelm S., Bradfield P. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J. 1994 Oct 3;13(19):4490–4503. doi: 10.1002/j.1460-2075.1994.tb06771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cyster J. G., Goodnow C. C. Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment. Immunity. 1997 May;6(5):509–517. doi: 10.1016/s1074-7613(00)80339-8. [DOI] [PubMed] [Google Scholar]
  9. Falco M., Biassoni R., Bottino C., Vitale M., Sivori S., Augugliaro R., Moretta L., Moretta A. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med. 1999 Sep 20;190(6):793–802. doi: 10.1084/jem.190.6.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferlazzo G., Spaggiari G. M., Semino C., Melioli G., Moretta L. Engagement of CD33 surface molecules prevents the generation of dendritic cells from both monocytes and CD34+ myeloid precursors. Eur J Immunol. 2000 Mar;30(3):827–833. doi: 10.1002/1521-4141(200003)30:3<827::AID-IMMU827>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  11. Floyd H., Ni J., Cornish A. L., Zeng Z., Liu D., Carter K. C., Steel J., Crocker P. R. Siglec-8. A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem. 2000 Jan 14;275(2):861–866. doi: 10.1074/jbc.275.2.861. [DOI] [PubMed] [Google Scholar]
  12. Freeman S. D., Kelm S., Barber E. K., Crocker P. R. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995 Apr 15;85(8):2005–2012. [PubMed] [Google Scholar]
  13. Gaddy J., Broxmeyer H. E. Cord blood CD16+56- cells with low lytic activity are possible precursors of mature natural killer cells. Cell Immunol. 1997 Sep 15;180(2):132–142. doi: 10.1006/cimm.1997.1175. [DOI] [PubMed] [Google Scholar]
  14. Hartnell A., Steel J., Turley H., Jones M., Jackson D. G., Crocker P. R. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood. 2001 Jan 1;97(1):288–296. doi: 10.1182/blood.v97.1.288. [DOI] [PubMed] [Google Scholar]
  15. Kelm S., Pelz A., Schauer R., Filbin M. T., Tang S., de Bellard M. E., Schnaar R. L., Mahoney J. A., Hartnell A., Bradfield P. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol. 1994 Nov 1;4(11):965–972. doi: 10.1016/s0960-9822(00)00220-7. [DOI] [PubMed] [Google Scholar]
  16. Kelm S., Schauer R. Sialic acids in molecular and cellular interactions. Int Rev Cytol. 1997;175:137–240. doi: 10.1016/S0074-7696(08)62127-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kikly K. K., Bochner B. S., Freeman S. D., Tan K. B., Gallagher K. T., D'alessio K. J., Holmes S. D., Abrahamson J. A., Erickson-Miller C. L., Murdock P. R. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol. 2000 Jun;105(6 Pt 1):1093–1100. doi: 10.1067/mai.2000.107127. [DOI] [PubMed] [Google Scholar]
  18. Lanier L. L., Corliss B. C., Wu J., Leong C., Phillips J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature. 1998 Feb 12;391(6668):703–707. doi: 10.1038/35642. [DOI] [PubMed] [Google Scholar]
  19. May A. P., Robinson R. C., Vinson M., Crocker P. R., Jones E. Y. Crystal structure of the N-terminal domain of sialoadhesin in complex with 3' sialyllactose at 1.85 A resolution. Mol Cell. 1998 Apr;1(5):719–728. doi: 10.1016/s1097-2765(00)80071-4. [DOI] [PubMed] [Google Scholar]
  20. McKenzie R. S., Simms P. E., Helfrich B. A., Fisher R. I., Ellis T. M. Identification of a novel CD56- lymphokine-activated killer cell precursor in cancer patients receiving recombinant interleukin 2. Cancer Res. 1992 Nov 15;52(22):6318–6322. [PubMed] [Google Scholar]
  21. Nicoll G., Ni J., Liu D., Klenerman P., Munday J., Dubock S., Mattei M. G., Crocker P. R. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem. 1999 Nov 26;274(48):34089–34095. doi: 10.1074/jbc.274.48.34089. [DOI] [PubMed] [Google Scholar]
  22. Nitschke L., Carsetti R., Ocker B., Köhler G., Lamers M. C. CD22 is a negative regulator of B-cell receptor signalling. Curr Biol. 1997 Feb 1;7(2):133–143. doi: 10.1016/s0960-9822(06)00057-1. [DOI] [PubMed] [Google Scholar]
  23. O'Shannessy D. J., Willison H. J., Inuzuka T., Dobersen M. J., Quarles R. H. The species distribution of nervous system antigens that react with anti-myelin-associated glycoprotein antibodies. J Neuroimmunol. 1985 Sep;9(5):255–268. doi: 10.1016/s0165-5728(85)80024-2. [DOI] [PubMed] [Google Scholar]
  24. Ogura K., Tsuchiya S., Terasawa H., Yuzawa S., Hatanaka H., Mandiyan V., Schlessinger J., Inagaki F. Solution structure of the SH2 domain of Grb2 complexed with the Shc-derived phosphotyrosine-containing peptide. J Mol Biol. 1999 Jun 11;289(3):439–445. doi: 10.1006/jmbi.1999.2792. [DOI] [PubMed] [Google Scholar]
  25. Ollendorff V., Mattei M., Fournier E., Adelaide J., Lopez M., Rosnet O., Birnbaum D. A third human CBL gene is on chromosome 19. Int J Oncol. 1998 Dec;13(6):1159–1161. doi: 10.3892/ijo.13.6.1159. [DOI] [PubMed] [Google Scholar]
  26. Patel N., Brinkman-Van der Linden E. C., Altmann S. W., Gish K., Balasubramanian S., Timans J. C., Peterson D., Bell M. P., Bazan J. F., Varki A. OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem. 1999 Aug 6;274(32):22729–22738. doi: 10.1074/jbc.274.32.22729. [DOI] [PubMed] [Google Scholar]
  27. Paul S. P., Taylor L. S., Stansbury E. K., McVicar D. W. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood. 2000 Jul 15;96(2):483–490. [PubMed] [Google Scholar]
  28. Peiper S. C., Ashmun R. A., Look A. T. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen. Blood. 1988 Jul;72(1):314–321. [PubMed] [Google Scholar]
  29. Poe J. C., Fujimoto M., Jansen P. J., Miller A. S., Tedder T. F. CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J Biol Chem. 2000 Jun 9;275(23):17420–17427. doi: 10.1074/jbc.M001892200. [DOI] [PubMed] [Google Scholar]
  30. Powell L. D., Sgroi D., Sjoberg E. R., Stamenkovic I., Varki A. Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem. 1993 Apr 5;268(10):7019–7027. [PubMed] [Google Scholar]
  31. Rahuel J., Gay B., Erdmann D., Strauss A., Garcia-Echeverría C., Furet P., Caravatti G., Fretz H., Schoepfer J., Grütter M. G. Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Nat Struct Biol. 1996 Jul;3(7):586–589. doi: 10.1038/nsb0796-586. [DOI] [PubMed] [Google Scholar]
  32. Razi N., Varki A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7469–7474. doi: 10.1073/pnas.95.13.7469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sgroi D., Varki A., Braesch-Andersen S., Stamenkovic I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem. 1993 Apr 5;268(10):7011–7018. [PubMed] [Google Scholar]
  34. Skolnik E. Y., Lee C. H., Batzer A., Vicentini L. M., Zhou M., Daly R., Myers M. J., Jr, Backer J. M., Ullrich A., White M. F. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 1993 May;12(5):1929–1936. doi: 10.1002/j.1460-2075.1993.tb05842.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takei Y., Sasaki S., Fujiwara T., Takahashi E., Muto T., Nakamura Y. Molecular cloning of a novel gene similar to myeloid antigen CD33 and its specific expression in placenta. Cytogenet Cell Genet. 1997;78(3-4):295–300. doi: 10.1159/000134676. [DOI] [PubMed] [Google Scholar]
  36. Taylor V. C., Buckley C. D., Douglas M., Cody A. J., Simmons D. L., Freeman S. D. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem. 1999 Apr 23;274(17):11505–11512. doi: 10.1074/jbc.274.17.11505. [DOI] [PubMed] [Google Scholar]
  37. Tropak M. B., Jansz G. F., Abramow-Newerly W., Roder J. C. Conservation of functionally important epitopes on myelin associated glycoprotein (MAG). Comp Biochem Physiol B Biochem Mol Biol. 1995 Oct;112(2):345–354. doi: 10.1016/0305-0491(95)00087-9. [DOI] [PubMed] [Google Scholar]
  38. Ulyanova T., Blasioli J., Woodford-Thomas T. A., Thomas M. L. The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol. 1999 Nov;29(11):3440–3449. doi: 10.1002/(SICI)1521-4141(199911)29:11<3440::AID-IMMU3440>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  39. Vitale C., Romagnani C., Falco M., Ponte M., Vitale M., Moretta A., Bacigalupo A., Moretta L., Mingari M. C. Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15091–15096. doi: 10.1073/pnas.96.26.15091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yohannan J., Wienands J., Coggeshall K. M., Justement L. B. Analysis of tyrosine phosphorylation-dependent interactions between stimulatory effector proteins and the B cell co-receptor CD22. J Biol Chem. 1999 Jun 25;274(26):18769–18776. doi: 10.1074/jbc.274.26.18769. [DOI] [PubMed] [Google Scholar]
  41. Zhang J. Q., Nicoll G., Jones C., Crocker P. R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem. 2000 Jul 21;275(29):22121–22126. doi: 10.1074/jbc.M002788200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES