Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):537–544. doi: 10.1042/0264-6021:3550537

Co-operative regulation of the transcription of human dihydrodiol dehydrogenase (DD)4/aldo-keto reductase (AKR)1C4 gene by hepatocyte nuclear factor (HNF)-4alpha/gamma and HNF-1alpha.

T Ozeki 1, Y Takahashi 1, T Kume 1, K Nakayama 1, T Yokoi 1, K Nunoya 1, A Hara 1, T Kamataki 1
PMCID: PMC1221767  PMID: 11284743

Abstract

Human dihydrodiol dehydrogenase (DD) 4/aldo-keto reductase (AKR) 1C4 is a major isoform of hepatic DD that oxidizes trans-dihydrodiols of polycyclic aromatic hydrocarbons to reactive and redox-active o-quinones and that reduces several ketone-containing drugs. To investigate the mechanism of transcriptional regulation of the human DD4 gene, the 5'-flanking region of the gene was fused to the luciferase gene. The results of luciferase assays using HepG2 cells and of 1,10-phenanthroline-copper footprinting indicated that two positive regulatory regions were located in regions from -701 to -684 and from -682 to -666. The former region contained a putative hepatocyte nuclear factor (HNF)-4 binding motif, and the latter region contained an HNF-1 consensus binding sequence. DNA fragments of the HNF-4 or HNF-1 motif gave a shifted band in a gel-shift assay with nuclear extracts from HepG2 cells. The formation of the DNA-protein complex was inhibited by the HNF-4 or HNF-1 motif of the alpha(1)-antitrypsin gene. A supershift assay using antibodies to human HNF-4alpha, HNF-4gamma and HNF-1alpha showed that HNF-4alpha and HNF-4gamma bound to the HNF-4 motif, and that HNF-1alpha interacted with the HNF-1 motif. Introduction of mutations into the HNF-4 or HNF-1 motif lowered the luciferase activity to 10 or 8% respectively of that seen with the intact human DD4 gene. These results indicate that HNF-4alpha, HNF-4gamma and HNF-1alpha regulate co-operatively the transcription of the human DD4 gene in HepG2 cells.

Full Text

The Full Text of this article is available as a PDF (358.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breen A. P., Murphy J. A. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995 Jun;18(6):1033–1077. doi: 10.1016/0891-5849(94)00209-3. [DOI] [PubMed] [Google Scholar]
  2. Burczynski M. E., Harvey R. G., Penning T. M. Expression and characterization of four recombinant human dihydrodiol dehydrogenase isoforms: oxidation of trans-7, 8-dihydroxy-7,8-dihydrobenzo[a]pyrene to the activated o-quinone metabolite benzo[a]pyrene-7,8-dione. Biochemistry. 1998 May 12;37(19):6781–6790. doi: 10.1021/bi972725u. [DOI] [PubMed] [Google Scholar]
  3. Ciaccio P. J., Walsh E. S., Tew K. D. Promoter analysis of a human dihydrodiol dehydrogenase. Biochem Biophys Res Commun. 1996 Nov 12;228(2):524–529. doi: 10.1006/bbrc.1996.1693. [DOI] [PubMed] [Google Scholar]
  4. Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem J. 1994 Apr 15;299(Pt 2):545–552. doi: 10.1042/bj2990545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deyashiki Y., Tamada Y., Miyabe Y., Nakanishi M., Matsuura K., Hara A. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver. J Biochem. 1995 Aug;118(2):285–290. doi: 10.1093/oxfordjournals.jbchem.a124904. [DOI] [PubMed] [Google Scholar]
  6. Deyashiki Y., Taniguchi H., Amano T., Nakayama T., Hara A., Sawada H. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3 alpha-hydroxysteroid dehydrogenase activity. Biochem J. 1992 Mar 15;282(Pt 3):741–746. doi: 10.1042/bj2820741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flowers-Geary L., Bleczinki W., Harvey R. G., Penning T. M. Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon ortho-quinones produced by dihydrodiol dehydrogenase. Chem Biol Interact. 1996 Jan 5;99(1-3):55–72. doi: 10.1016/0009-2797(95)03660-1. [DOI] [PubMed] [Google Scholar]
  9. Flowers L., Ohnishi S. T., Penning T. M. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,. Biochemistry. 1997 Jul 15;36(28):8640–8648. doi: 10.1021/bi970367p. [DOI] [PubMed] [Google Scholar]
  10. Fractionation of mammalian DNA on deae-cellulose. J Chromatogr. 1975 Apr 9;107(1):125–140. doi: 10.1016/s0021-9673(00)82755-7. [DOI] [PubMed] [Google Scholar]
  11. Frain M., Swart G., Monaci P., Nicosia A., Stämpfli S., Frank R., Cortese R. The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Cell. 1989 Oct 6;59(1):145–157. doi: 10.1016/0092-8674(89)90877-5. [DOI] [PubMed] [Google Scholar]
  12. Glatt H. R., Vogel K., Bentley P., Oesch F. Reduction of benzo(a)pyrene mutagenicity by dihydrodiol dehydrogenase. Nature. 1979 Jan 25;277(5694):319–320. doi: 10.1038/277319a0. [DOI] [PubMed] [Google Scholar]
  13. Hall R. K., Sladek F. M., Granner D. K. The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):412–416. doi: 10.1073/pnas.92.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hara A., Matsuura K., Tamada Y., Sato K., Miyabe Y., Deyashiki Y., Ishida N. Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells. Biochem J. 1996 Jan 15;313(Pt 2):373–376. doi: 10.1042/bj3130373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hara A., Taniguchi H., Nakayama T., Sawada H. Purification and properties of multiple forms of dihydrodiol dehydrogenase from human liver. J Biochem. 1990 Aug;108(2):250–254. doi: 10.1093/oxfordjournals.jbchem.a123189. [DOI] [PubMed] [Google Scholar]
  16. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  17. Herbomel P., Bourachot B., Yaniv M. Two distinct enhancers with different cell specificities coexist in the regulatory region of polyoma. Cell. 1984 Dec;39(3 Pt 2):653–662. doi: 10.1016/0092-8674(84)90472-0. [DOI] [PubMed] [Google Scholar]
  18. Hou Y. T., Xia W., Pawlowski J. E., Penning T. M. Rat dihydrodiol dehydrogenase: complexity of gene structure and tissue-specific and sexually dimorphic gene expression. Cancer Res. 1994 Jan 1;54(1):247–255. [PubMed] [Google Scholar]
  19. Jez J. M., Flynn T. G., Penning T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol. 1997 Sep 15;54(6):639–647. doi: 10.1016/s0006-2952(97)84253-0. [DOI] [PubMed] [Google Scholar]
  20. Khanna M., Qin K. N., Wang R. W., Cheng K. C. Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3 alpha-hydroxysteroid dehydrogenases. J Biol Chem. 1995 Aug 25;270(34):20162–20168. doi: 10.1074/jbc.270.34.20162. [DOI] [PubMed] [Google Scholar]
  21. Kuwabara M. D., Sigman D. S. Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes. Biochemistry. 1987 Nov 17;26(23):7234–7238. doi: 10.1021/bi00397a006. [DOI] [PubMed] [Google Scholar]
  22. Lin H. K., Penning T. M. Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase gene. Cancer Res. 1995 Sep 15;55(18):4105–4113. [PubMed] [Google Scholar]
  23. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  24. McCoull K. D., Rindgen D., Blair I. A., Penning T. M. Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chem Res Toxicol. 1999 Mar;12(3):237–246. doi: 10.1021/tx980182z. [DOI] [PubMed] [Google Scholar]
  25. Miura N., Tanaka K. Analysis of the rat hepatocyte nuclear factor (HNF) 1 gene promoter: synergistic activation by HNF4 and HNF1 proteins. Nucleic Acids Res. 1993 Aug 11;21(16):3731–3736. doi: 10.1093/nar/21.16.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Monaci P., Nicosia A., Cortese R. Two different liver-specific factors stimulate in vitro transcription from the human alpha 1-antitrypsin promoter. EMBO J. 1988 Jul;7(7):2075–2087. doi: 10.1002/j.1460-2075.1988.tb03047.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohara H., Miyabe Y., Deyashiki Y., Matsuura K., Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem Pharmacol. 1995 Jul 17;50(2):221–227. doi: 10.1016/0006-2952(95)00124-i. [DOI] [PubMed] [Google Scholar]
  28. Penning T. M., Ohnishi S. T., Ohnishi T., Harvey R. G. Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase. Chem Res Toxicol. 1996 Jan-Feb;9(1):84–92. doi: 10.1021/tx950055s. [DOI] [PubMed] [Google Scholar]
  29. Penning T. M., Sharp R. B. Characterization of dihydrodiol dehydrogenase in human liver and lung. Carcinogenesis. 1990 Jul;11(7):1203–1208. doi: 10.1093/carcin/11.7.1203. [DOI] [PubMed] [Google Scholar]
  30. Qin K. N., New M. I., Cheng K. C. Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3 alpha-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):673–679. doi: 10.1016/0960-0760(93)90308-j. [DOI] [PubMed] [Google Scholar]
  31. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shou M., Harvey R. G., Penning T. M. Reactivity of benzo[a]pyrene-7,8-dione with DNA. Evidence for the formation of deoxyguanosine adducts. Carcinogenesis. 1993 Mar;14(3):475–482. doi: 10.1093/carcin/14.3.475. [DOI] [PubMed] [Google Scholar]
  34. Stolz A., Hammond L., Lou H., Takikawa H., Ronk M., Shively J. E. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993 May 15;268(14):10448–10457. [PubMed] [Google Scholar]
  35. Winters C. J., Molowa D. T., Guzelian P. S. Isolation and characterization of cloned cDNAs encoding human liver chlordecone reductase. Biochemistry. 1990 Jan 30;29(4):1080–1087. doi: 10.1021/bi00456a034. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES